• 제목/요약/키워드: advanced persistent threat

검색결과 65건 처리시간 0.02초

빅데이터 분석을 통한 APT공격 전조 현상 분석 (The Analysis of the APT Prelude by Big Data Analytics)

  • 최찬영;박대우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 춘계학술대회
    • /
    • pp.317-320
    • /
    • 2016
  • 2011년 NH농협 전산망마비 사건, 2013년 3.20 사이버테러 및 2015년 12월의 한국수력원자력 원전 중요자료 유출사건이 있었다. 이러한 사이버테러는 해외(북한)에서 조직적이고 장기간의 걸친 고도화된 APT공격을 감행하여 발생한 사이버테러 사건이다. 하지만, 이러한 APT공격(Advanced Persistent Threat Attack)을 방어하기 위한 탁월한 방안 아직 마련되지 못했다. APT공격은 현재의 관제 방식으로는 방어하기가 힘들다. 따라서, 본 논문에서는 빅데이터 분석을 통해 APT공격을 예측할 수 있는 방안을 연구한다. 본 연구는 대한민국 3계층 보안관제 체계 중, 정보공유분석센터(ISAC)를 기준으로 하여 빅데이터 분석, APT공격 및 취약점 분석에 대해서 연구와 조사를 한다. 그리고 외부의 블랙리스트 IP 및 DNS Log를 이용한 APT공격 예측 방안의 설계 방법, 그리고 전조현상 분석 방법 및 APT 공격에 대한 대응방안에 대해 연구한다.

  • PDF

APT 공격 탐지를 위한 호스트 기반 특징 표현 방법 (Host based Feature Description Method for Detecting APT Attack)

  • 문대성;이한성;김익균
    • 정보보호학회논문지
    • /
    • 제24권5호
    • /
    • pp.839-850
    • /
    • 2014
  • 3.20 사이버 테러 등 APT 공격이 사회적, 경제적으로 막대한 피해를 초래함에 따라 APT 공격을 방어하기 위한 기술적인 대책이 절실히 요구되고 있으나, 시그너쳐에 기반한 보안 장비로는 대응하는데 한계가 있다. 이에 본 논문에서는 기존 시그너쳐 기반 침입탐지 시스템의 한계를 극복하기 위해서 호스트 PC에서 발생하는 행위정보를 기반으로 악성코드를 탐지하는 방법을 제안한다. 먼저, 악성코드와 정상 실행파일을 구분하기 위한 39개의 특성인자를 정의하고, 악성코드 및 정상 실행파일이 실행되는 동안 발생하는 870만 개의 특성인자 데이터를 수집하였다. 또한, 수집된 데이터에 대해 각 특성인자의 발생빈도를 프로세스 ID 별로 재구성하여 실행파일이 호스트에서 실행되는 동안의 행위정보를 83차원의 벡터로 표현하였다. 특히, 자식 프로세스에서 발생하는 특성인자 이벤트의 발생빈도를 포함함으로써 보다 정확한 행위정보의 표현이 가능하였다. C4.5 결정트리 방법을 적용하여 악성코드와 정상파일을 분류한 결과 각각 2.0%의 오탐률과 5.8%의 미탐률을 보였다.

오토 인코더 기반의 단일 클래스 이상 탐지 모델을 통한 네트워크 침입 탐지 (Network Intrusion Detection with One Class Anomaly Detection Model based on Auto Encoder.)

  • 민병준;유지훈;김상수;신동일;신동규
    • 인터넷정보학회논문지
    • /
    • 제22권1호
    • /
    • pp.13-22
    • /
    • 2021
  • 최근 네트워크 환경에 대한 공격이 급속도로 고도화 및 지능화 되고 있기에, 기존의 시그니처 기반 침입탐지 시스템은 한계점이 명확해지고 있다. 지능형 지속 위협(Adavanced Persistent Threat; APT)과 같은 새로운 공격에 대해서 시그니처 패턴은 일반화 성능이 떨어지는 문제가 존재한다. 이러한 문제를 해결하기 위해 기계학습 기반의 침입 탐지 시스템에 대한 연구가 활발히 진행되고 있다. 하지만 실제 네트워크 환경에서 공격 샘플은 정상 샘플에 비해서 매우 적게 수집되어 클래스 불균형(Class Imbalance) 문제를 겪게 된다. 이러한 데이터로 지도 학습 기반의 이상 탐지 모델을 학습시킬 경우 정상 샘플에 편향된 결과를 가지게 된다. 본 논문에서는 이러한 불균형 문제를 해결하기 위해서 오토 인코더(Auto Encoder; AE)를 활용해 One-Class Anomaly Detection 을 수행하여 이를 극복한다. 실험은 NSL-KDD 데이터 셋을 통해 진행되었으며, 제안한 방법의 성능 평가를 위해 지도 학습된 모델들과 성능을 비교한다.

랜섬웨어 분석 및 탐지패턴 자동화 모델에 관한 연구 (The Automation Model of Ransomware Analysis and Detection Pattern)

  • 이후기;성종혁;김유천;김종배;김광용
    • 한국정보통신학회논문지
    • /
    • 제21권8호
    • /
    • pp.1581-1588
    • /
    • 2017
  • 최근 광범위하게 유포되고 있는 랜섬웨어는 단순 파일 암호화 후 금전을 요구하는 기존 방식의 공격에서 벗어나 신 변종 유포, 사회공학적 공격 방법을 이용한 표적형 유포, 광고 서버를 해킹해 랜섬웨어를 대량으로 유포하는 멀버타이징 형태의 유포, RaaS 등을 통해 더욱 고도화, 지능화되고 있다. 특히, 보안솔루션을 우회하거나 파일암호화를 통해 파라미터 확인을 불가능하게 하고, APT 공격을 접목한 타겟형 랜섬웨어 공격 등으로 공격자에 대한 추적을 어렵게 하고 있다. 이와 같은 랜섬웨어의 위협에서 벗어나기 위해 다양한 탐지기법이 개발되고 있지만 새롭게 출몰하는 랜섬웨어에 대응하기에는 힘든 상황이다. 이에 본 논문에서는 시그니처 기반의 탐지 패턴 제작 및 그 문제점에 대해 알아보고, 랜섬웨어에 보다 더 능동적으로 대처하기 위해 일련의 과정을 자동으로 진행하는 랜섬웨어 감염 탐지 패턴 자동화 모델을 제시한다. 본 모델은 기업이나 공공 보안관제센터에서 다양한 응용이 가능할 것으로 기대된다.

수탁사 개인정보 관리 수준 점검 항목의 상대적 중요도 분석 (Relative Importance Analysis of Management Level Diagnosis for Consignee's Personal Information Protection)

  • 임동성;이상준
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제8권2호
    • /
    • pp.1-11
    • /
    • 2018
  • 최근 ICT와 함께 IoT, 클라우드, 인공지능 등의 신기술들이 정보화 사회를 폭발적으로 변화 시키고 있다. 그러나 APT(Advanced Persistent Threat), 악성 코드, 랜섬웨어 등 최신 위협과 개인정보 처리 위탁 업무 확대로 수탁사 관련 개인정보 유출 사고도 더욱 더 증가하고 있다. 따라서 수탁사 보안 강화를 위해 본 연구는 위수탁 개요 및 특징, 보안 표준 관리 체계, 선행 연구들을 현황 분석하여 점검 항목을 도출하였다. 그리고 수탁관련 정보통신망법, 개인정보보호법 등의 법률들을 분석 매핑한 후 최종 수탁사 개인정보 보호 관리 수준 점검 항목들을 도출하고 이를 토대로 AHP 모형에 적용하여, 점검 항목간 상대적 중요도를 확인하였다. 실증 분석 결과 내부관리체계 수립, 개인정보 암호화, 생명주기, 접근 권한 관리 등의 순으로 중요도 우선 순위가 나타났다. 본 연구의 의의는 수탁사 개인정보 취급시 요구되는 점검 항목을 도출하고 연구 모형을 실증함으로써 고객 정보 유출 위험 감소 및 수탁사의 개인정보 보호 관리 수준을 향상시킬 수 있으며, 점검 항목의 상대적 중요도를 고려하여 점검 활동을 수행한다면 투입 시간 및 비용에 대한 효과성을 높일 수 있을 것이다.