• Title/Summary/Keyword: advanced persistent threat

Search Result 65, Processing Time 0.024 seconds

Application of Integrated Security Control of Artificial Intelligence Technology and Improvement of Cyber-Threat Response Process (인공지능 기술의 통합보안관제 적용 및 사이버침해대응 절차 개선 )

  • Ko, Kwang-Soo;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.59-66
    • /
    • 2021
  • In this paper, an improved integrated security control procedure is newly proposed by applying artificial intelligence technology to integrated security control and unifying the existing security control and AI security control response procedures. Current cyber security control is highly dependent on the level of human ability. In other words, it is practically unreasonable to analyze various logs generated by people from different types of equipment and analyze and process all of the security events that are rapidly increasing. And, the signature-based security equipment that detects by matching a string and a pattern has insufficient functions to accurately detect advanced and advanced cyberattacks such as APT (Advanced Persistent Threat). As one way to solve these pending problems, the artificial intelligence technology of supervised and unsupervised learning is applied to the detection and analysis of cyber attacks, and through this, the analysis of logs and events that occur innumerable times is automated and intelligent through this. The level of response has been raised in the overall aspect by making it possible to predict and block the continuous occurrence of cyberattacks. And after applying AI security control technology, an improved integrated security control service model was newly proposed by integrating and solving the problem of overlapping detection of AI and SIEM into a unified breach response process(procedure).

Honeypot game-theoretical model for defending against APT attacks with limited resources in cyber-physical systems

  • Tian, Wen;Ji, Xiao-Peng;Liu, Weiwei;Zhai, Jiangtao;Liu, Guangjie;Dai, Yuewei;Huang, Shuhua
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.585-598
    • /
    • 2019
  • A cyber-physical system (CPS) is a new mechanism controlled or monitored by computer algorithms that intertwine physical and software components. Advanced persistent threats (APTs) represent stealthy, powerful, and well-funded attacks against CPSs; they integrate physical processes and have recently become an active research area. Existing offensive and defensive processes for APTs in CPSs are usually modeled by incomplete information game theory. However, honeypots, which are effective security vulnerability defense mechanisms, have not been widely adopted or modeled for defense against APT attacks in CPSs. In this study, a honeypot game-theoretical model considering both low- and high-interaction modes is used to investigate the offensive and defensive interactions, so that defensive strategies against APTs can be optimized. In this model, human analysis and honeypot allocation costs are introduced as limited resources. We prove the existence of Bayesian Nash equilibrium strategies and obtain the optimal defensive strategy under limited resources. Finally, numerical simulations demonstrate that the proposed method is effective in obtaining the optimal defensive effect.

A Study Of Mining ESM based on Data-Mining (데이터 마이닝 기반 보안관제 시스템)

  • Kim, Min-Jun;Kim, Kui-Nam
    • Convergence Security Journal
    • /
    • v.11 no.6
    • /
    • pp.3-8
    • /
    • 2011
  • Advanced Persistent Threat (APT), aims a specific business or political targets, is rapidly growing due to fast technological advancement in hacking, malicious code, and social engineering techniques. One of the most important characteristics of APT is persistence. Attackers constantly collect information by remaining inside of the targets. Enterprise Security Management (EMS) system can misidentify APT as normal pattern of an access or an entry of a normal user as an attack. In order to analyze this misidentification, a new system development and a research are required. This study suggests the way of forecasting APT and the effective countermeasures against APT attacks by categorizing misidentified data in data-mining through threshold ratings. This proposed technique can improve the detection of future APT attacks by categorizing the data of long-term attack attempts.

A Comparative Study of Machine Learning Algorithms Using LID-DS DataSet (LID-DS 데이터 세트를 사용한 기계학습 알고리즘 비교 연구)

  • Park, DaeKyeong;Ryu, KyungJoon;Shin, DongIl;Shin, DongKyoo;Park, JeongChan;Kim, JinGoog
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • Today's information and communication technology is rapidly developing, the security of IT infrastructure is becoming more important, and at the same time, cyber attacks of various forms are becoming more advanced and sophisticated like intelligent persistent attacks (Advanced Persistent Threat). Early defense or prediction of increasingly sophisticated cyber attacks is extremely important, and in many cases, the analysis of network-based intrusion detection systems (NIDS) related data alone cannot prevent rapidly changing cyber attacks. Therefore, we are currently using data generated by intrusion detection systems to protect against cyber attacks described above through Host-based Intrusion Detection System (HIDS) data analysis. In this paper, we conducted a comparative study on machine learning algorithms using LID-DS (Leipzig Intrusion Detection-Data Set) host-based intrusion detection data including thread information, metadata, and buffer data missing from previously used data sets. The algorithms used were Decision Tree, Naive Bayes, MLP (Multi-Layer Perceptron), Logistic Regression, LSTM (Long Short-Term Memory model), and RNN (Recurrent Neural Network). Accuracy, accuracy, recall, F1-Score indicators and error rates were measured for evaluation. As a result, the LSTM algorithm had the highest accuracy.

Optimal path planning and analysis for the maximization of multi UAVs survivability for missions involving multiple threats and locations (다수의 위협과 복수의 목적지가 존재하는 임무에서 복수 무인기의 생존율 극대화를 위한 최적 경로 계획 및 분석)

  • Jeong, Seongsik;Jang, Dae-Sung;Park, Hyunjin;Seong, Taehyun;Ahn, Jaemyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.488-496
    • /
    • 2015
  • This paper proposes a framework to determine the routes of multiple unmanned aerial vehicles (UAVs) to conduct multiple tasks in different locations considering the survivability of the vehicles. The routing problem can be formulated as the vehicle routing problem (VRP) with different cost matrices representing the trade-off between the safety of the UAVs and the mission completion time. The threat level for a UAV at a certain location was modeled considering the detection probability and the shoot-down probability. The minimal-cost path connecting two locations considering the threat level and the flight distance was obtained using the Dijkstra algorithm in hexagonal cells. A case study for determining the optimal routes for a persistent multi-UAVs surveillance and reconnaissance missions given multiple enemy bases was conducted and its results were discussed.

A Host-based Intrusion Detection Data Analysis Comparison (호스트 기반 침입 탐지 데이터 분석 비교)

  • Park, DaeKyeong;Shin, Dongkyoo;Shin, Dongil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.490-493
    • /
    • 2020
  • 오늘날 정보통신 기술이 급격하게 발달하면서 IT 인프라에서 보안의 중요성이 높아졌고 동시에 APT(Advanced Persistent threat)처럼 고도화되고 다양한 형태의 공격이 증가하고 있다. 점점 더 고도화되는 공격을 조기에 방어하거나 예측하는 것은 매우 중요한 문제이며, NIDS(Network-based Intrusion Detection System) 관련 데이터 분석만으로는 빠르게 변형하는 공격을 방어하지 못하는 경우가 많이 보고되고 있다. 따라서 HIDS(Host-based Intrusion Detection System) 데이터 분석을 통해서 위와 같은 공격을 방어하는데 현재는 침입탐지 시스템에서 생성된 데이터가 주로 사용된다. 하지만 데이터가 많이 부족하여 과거에 생성된 DARPA(Defense Advanced Research Projects Agency) 침입 탐지 평가 데이터 세트인 KDD(Knowledge Discovery and Data Mining) 같은 데이터로 연구를 하고 있어 현대 컴퓨터 시스템 특정을 반영한 데이터의 비정상행위 탐지에 대한 연구가 많이 부족하다. 본 논문에서는 기존에 사용되었던 데이터 세트에서 결여된 스레드 정보, 메타 데이터 및 버퍼 데이터를 포함하고 있으면서 최근에 생성된 LID-DS(Leipzig Intrusion Detection-Data Set) 데이터를 이용한 분석 비교 연구를 통해 앞으로 호스트 기반 침입 탐지 데이터 시스템의 나아갈 새로운 연구 방향을 제시한다.

Development of an open source-based APT attack prevention Chrome extension (오픈소스 기반 APT 공격 예방 Chrome extension 개발)

  • Kim, Heeeun;Shon, Taeshik;Kim, Duwon;Han, Gwangseok;Seong, JiHoon
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.3-17
    • /
    • 2021
  • Advanced persistent threat (APT) attacks are attacks aimed at a particular entity as a set of latent and persistent computer hacking processes. These APT attacks are usually carried out through various methods, including spam mail and disguised banner advertising. The same name is also used for files, since most of them are distributed via spam mail disguised as invoices, shipment documents, and purchase orders. In addition, such Infostealer attacks were the most frequently discovered malicious code in the first week of February 2021. CDR is a 'Content Disarm & Reconstruction' technology that can prevent the risk of malware infection by removing potential security threats from files and recombining them into safe files. Gartner, a global IT advisory organization, recommends CDR as a solution to attacks in the form of attachments. There is a program using CDR techniques released as open source is called 'Dangerzone'. The program supports the extension of most document files, but does not support the extension of HWP files that are widely used in Korea. In addition, Gmail blocks malicious URLs first, but it does not block malicious URLs in mail systems such as Naver and Daum, so malicious URLs can be easily distributed. Based on this problem, we developed a 'Dangerzone' program that supports the HWP extension to prevent APT attacks, and a Chrome extension that performs URL checking in Naver and Daum mail and blocking banner ads.

네트워크 주소 변이 기반 Moving Target Defense 연구 동향

  • Woo, Samuel;Park, Kyungmin;Moon, Daesung;Kim, Ikkyun
    • Review of KIISC
    • /
    • v.28 no.2
    • /
    • pp.5-11
    • /
    • 2018
  • 지능형 지속 위협(Advanced Persistent Threat) 공격은 Intrusion Kill Chain과 같은 일련의 단계로 구성되어 있기 때문에 특정 단계가 차단되면 공격은 실패하게 된다. Moving Target Defense(MTD)는 보호대상의 주요 속성(네트워크, 운영체제, 소프트웨어, 데이터)을 변화시켜 Intrusion Kill Chain을 구성하는 각 단계를 차단하는 능동적 사전 보안 기술이다. MTD 전략 중에서 네트워크 주소 변이(Network Address Mutation) 기술은 보호대상의 네트워크 주소(IP. Port)를 능동적으로 변이하는 기술로써, Intrusion Kill Chain의 첫 단계인 정찰(Reconnaissance) 행위에 소요되는 비용을 급격하게 증가시킬 수 있는 효율적인 보안 기술이다. 본 논문은 네트워크 주소 변이 기술 분야의 관련 연구들을 살펴보고 네트워크 주소 변이 기술 설계 시 고려해야하는 보안 요구사항과 기능 요구사항을 제안한다.

Real-time Abnormal Behavior Detection by Online Data Collection (온라인 데이터 수집 기반 실시간 비정상 행위 탐지)

  • Lee, Myungcheol;Kim, ChangSoo;Kim, Ikkyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.208-209
    • /
    • 2016
  • APT (Advanced Persistent Threat) 공격 사례가 증가하면서, 이러한 APT 공격을 해결하고자 이상 행위 탐지 기술 관련 연구가 활발히 진행되고 있다. 최근에는 APT 공격의 탐지율을 높이기 위해서 빅데이터 기술을 활용하여 다양한 소스로부터 대규모 데이터를 수집하여 실시간 분석하는 연구들이 시도되고 있다. 본 논문은 빅데이터 기술을 활용하여 기존 시스템들의 실시간 처리 및 분석 한계를 극복하기 위한 실시간 비정상 행위 탐지 시스템에서, 파일 시스템에 수집된 오프라인 데이터 기반이 아닌 온라인 수집 데이터 기반으로 실시간 비정상 행위를 탐지하여 실시간성을 제고하고 입출력 병목 문제로 인한 처리 성능 확장성 문제를 해결하는 방법 및 시스템에 대해서 제안한다.

Technical Trends of Cyber Security with Big Data (빅데이터를 활용한 사이버 보안 기술 동향)

  • Kim, J.H.;Lim, S.H.;Kim, I.K.;Cho, H.S.;No, B.K.
    • Electronics and Telecommunications Trends
    • /
    • v.28 no.3
    • /
    • pp.19-29
    • /
    • 2013
  • 최근 외부 해킹으로 대량의 개인정보 유출, 대규모 시스템 장애 등 사고가 빈번히 발생하고 있다. 특히, 보안체계를 잘 갖추고 있던 조직들도 APT(Advanced Persistent Threat) 공격과 같이 지속적으로 특정 표적을 목표로 하는 공격 앞에 무력하게 당하는 사건들을 접하면서 많은 기업 및 조직들이 대응 방안 마련에 고심하고 있다. 본고에서는 사이버테러, 사이버전(戰), 핵티비즘 등의 공격방법으로 활용되고 있는 사이버 표적공격 위협에 대한 방어 기술로서 최근 관심을 받고 있는 빅데이터 처리 기술을 기반으로 다중소스 데이터 수집 분석을 통한 지능형 보안 기술에 대한 개념과 관련 기술 및 제품의 동향에 대하여 살펴본다.

  • PDF