• 제목/요약/키워드: advanced nanocomposites

검색결과 137건 처리시간 0.022초

Development of Gold Phosphorus Supported Carbon Nanocomposites

  • Mayani, Vishal J.;Mayani, Suranjana V.;Kim, Sang Wook
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.401-406
    • /
    • 2014
  • Metal-containing carbon nanocomposites have shown significance promise in the area of energy storage, heterogeneous catalysis and material science because of their morphology and combined properties. Phosphorus-doped carbon nanocomposites with gold nanoparticles were developed by applying a simple impregnation method and metal deposition technique. Gold-phosphorus supported carbon nanocomposites with two sized (25 and 170 nm) were prepared from economical petroleum pitch residue as the carbon source using an advanced silica template method. These nanocomposites will lead to the novel applications in the field of material science with the combined properties of gold, phosphorus and carbon. The newly prepared gold phosphorus supported carbon nanocomposites were fully characterized using a range of different physico-chemical techniques.

Crystallization and Melting Behavior of Silica Nanoparticles and Poly(ethylene 2,6-naphthalate) Hybrid Nanocomposites

  • Kim Jun-Young;Kim Seong-Hun;Kang Seong-Wook;Chang Jin-Hae;Ahn Seon-Hoon
    • Macromolecular Research
    • /
    • 제14권2호
    • /
    • pp.146-154
    • /
    • 2006
  • Organic and inorganic hybrid nanocomposites based on poly(ethylene 2,6-naphthalate) (PEN) and silica nanoparticles were prepared by a melt blending process. In particular, polymer nanocomposites consisting mostly of cheap conventional polyesters with very small quantities of inorganic nanoparticles are of great interest from an industrial perspective. The crystallization behavior of PEN/silica hybrid nanocomposites depended significantly on silica content and crystallization temperature. The activation energy of crystallization for PEN/silica hybrid nanocomposites was decreased by incorporating a small quantity of silica nanoparticles. Double melting behavior was observed in PEN/silica hybrid nanocomposites, and the equilibrium melting temperature decreased with increasing silica content. The fold surface free energy of PEN/silica hybrid nanocomposites decreased with increasing silica content. The work of chain folding (q) for PEN was estimated as $7.28{\times}10^{-20}J$ per molecular chain fold, while the q values for the PEN/silica 0.9 hybrid nanocomposite was $3.71{\times}10^{-20}J$, implying that the incorporation of silica nanoparticles lowers the work required to fold the polymer chains.

Poly(n-butyl acrylate-co-methyl methacrylate) and Poly(n-butyl acrylate-co-styrene)/Silicate Nanocomposites Prepared by Emulsion Polymerization

  • Park, Yeong-Suk;Chung, In-Jae
    • Macromolecular Research
    • /
    • 제11권6호
    • /
    • pp.425-430
    • /
    • 2003
  • Two types of poly(n-butyl acrylate) copolymer/silicate nanocomposites have been produced: poly(n-butyl acrylate-co-methyl methacrylate) [P(BA-co-MMA)]/silicate nanocomposites and poly(n-butyl acrylate-co-styrene) [P(BA-co-ST)]/silicate nanocomposites. The P(BA-co-MMA)/silicate nanocomposites shows the exfoliated structures but a P(BA-co-ST)/silicate nanocomposites have intercalated structures, because the BA/MMA comonomer has a higher polarity (e-value in Q-e scheme) than the BA/ST comonomer. The BA/MMA comonomer expanded the interlayer space of the silicate wider than did the BA/ST comonomer. The thermal degradation onset point of the P(BA-co-MMA)/silicate nanocomposites was 43$^{\circ}C$ higher than that of pure P(BA-co-MMA). P(BA-co-MMA)T5%, P(BA-co-MMA)T10%, and P(BA-co-MMA)T20% exhibit 134,302, and 195% increases, respectively, in their storage moduli at -20$^{\circ}C$ relative to the pure copolymer.

Synthesis and Properties of Exfoliated Poly(methyl methacrylate-co-acrylonitrile)/Clay Nanocomposites via Emulsion Polymerization

  • Mingzhe Xu;Park, Yeong-Suk;Wang, Ki-Hyun;Kim, Jong-Hyun;Chung, In-Jae
    • Macromolecular Research
    • /
    • 제11권6호
    • /
    • pp.410-417
    • /
    • 2003
  • Poly(methyl methacrylate-co-acrylonitrile) [P(MMA-co-AN)]/Na-MMT nanocomposites were synthesized through emulsion polymerization with pristine Na-MMT. The nanocomposites were exfoliated up to 20 wt% content of pristine Na-MMT relative to the amount of MMA and AN, and exhibited enhanced storage moduli, E', relative to the neat copolymer. The exfoliated morphology of the nanocomposite was confirmed by XRD and TEM. 2-Acryla-mido-2-methyl-1-propane sulfonic acid (AMPS) widened the galleries between the clay layers before polymerization and facilitated the comonomers, penetration into the clay to create the exfoliated nanocomposites. The onset of the thermal decomposition of the nanocomposites shifted to a higher temperature as the clay content increased. By calculating areas of tan$\delta$ of the nanocomposites, we observed that the nanocomposites show more solid-like behavior as the clay content increases. The dynamic storage modulus and complex viscosity increased with clay content. The complex viscosity showed shear-thinning behavior as the clay content increased. The Young's moduli of the nano-composites are higher than that of the neat copolymer and they increase steadily as the silicate content increases, as a result of the exfoliated structure at high clay content.

나노복합재료의 전기/역학적 특성과 예측을 위한 멀티스케일 모델링의 최신 연구 분석 (Review of Recent Advances in the Electrical/Mechanical Characteristics of Nanocomposites and Multi-scale Modeling of Nanocomposites)

  • 길태건;배진호;윤현노;이행기
    • 한국전산구조공학회논문집
    • /
    • 제36권2호
    • /
    • pp.131-136
    • /
    • 2023
  • 나노복합재료는 다기능성과 고성능을 가지는 혁신적인 복합재료이다. 나노 스케일 필러의 혼입함으로써 복합재료의 전기적, 역학적 및 열적 특성이 크게 향상될 수 있기 때문에 나노 스케일 필러를 이용한 나노복합재료의 특성화에 관한 다양한 연구가 광범위하게 수행되어 왔다. 특히, 탄소계 나노 필러(탄소나노튜브, 카본블랙, 그래핀 나노판 등)를 활용하여 전기/역학적 특성을 향상시킨 나노복합소재 개발에 관한 연구들이 복합재료 분야에서 큰 관심을 받고있다. 본 논문은 실제 응용에 필수적인 나노복합재료의 전기/역학적 특성을 문헌조사를 통해 고찰하는 것을 목표로 한다. 또한, 나노복합재료의 전기/역학적 특성 예측을 위한 최신 멀티스케일 모델링 연구들에 대해서 검토하고, 멀티스케일 모델링에 대한 과제와 향후 발전 가능성에 대해서 논의한다.

압출성형기를 이용한 나노복합재 필름의 특성 분석 (Characteristics Analysis of Nano-composites Films Using Extruder)

  • 권일준;박성민;유성훈;염정현
    • 한국염색가공학회지
    • /
    • 제28권2호
    • /
    • pp.101-108
    • /
    • 2016
  • Polypropylene(PP)/multiwalled carbon nanotubes(MWCNT) nanocomposites films and PP/poly(vinyl alcohol)/CNT nanocomposites films were prepared through melt mixing method by the extruder. The PP/CNT nanocomposites films, which contain CNT of a variable content, were prepared for the first time and research on a appropriate content of the CNT on the PP/CNT nanocomposites films was conducted. The effects of take-up speed of the extruder on the mechanical and chemical properties of the PP/CNT and PP/PVA/CNT nanocomposites film were studied. Field emission scanning electron microscope(FE-SEM) was used to examine the surface morphology and the DSC measurement and tensile test were conducted. It was found that the properties decreased when take-up speed was increased.

Characterization of ZnO/TiO2 Nanocomposites Prepared via the Sol-Gel Method

  • Hellen, Nalumaga;Park, Hyun;Kim, Kyung-Nam
    • 한국세라믹학회지
    • /
    • 제55권2호
    • /
    • pp.140-144
    • /
    • 2018
  • $ZnO/TiO_2$ nanocomposites were synthesized via a modified sol-gel technique by incorporating 30 and 70 wt% $TiO_2$ nanopowder into a ZnO sol-gel matrix. Zinc acetate dihydrate was used as the ZnO precursor and de-ionized water as the solvent, while titanium oxysulfate was employed for the synthesis of $TiO_2$ nanopowder. The synthesized $ZnO/TiO_2$ nanocomposites were characterized by x-ray diffraction, UV-vis spectroscopy, scanning electron microscopy, and transmission electron microscopy. The $ZnO/TiO_2$ nanocomposites showed both the ZnO (wurtzite) and $TiO_2$ (anatase) phases. The average ZnO crystallite size of the $ZnO/TiO_2$ nanocomposites was found to be about 26.3 nm. The TEM results confirmed that spherical $TiO_2$ particles were embedded in the ZnO matrix. $TiO_2$ particles attached onto the rod-like ZnO particles were also observed. The $ZnO/TiO_2$ nanocomposites exhibited optical absorption properties superior to those of pure ZnO and $TiO_2$.

Poly(methyl methacrylate-co-styrene)/Silicate Nanocomposites Synthesized by Multistep Emulsion Polymerization

  • Park, Yeong-Suk;Kim, Yoon-Kyung;Chung, In-Jae
    • Macromolecular Research
    • /
    • 제11권6호
    • /
    • pp.418-424
    • /
    • 2003
  • Exfoliated poly(methyl methacrylate-co-styrene) [P(MMA-co-ST)]/silicate nanocomposites were synthesized through a multistep emulsion polymerization. The methyl methacrylate monomers were polymerized first and then the styrene monomers were polymerized. The nanocomposites had core-shell structures consisting of PMMA (core) and PS (shell); these structures were confirmed by $^1$H NMR spectroscopy and TEM, respectively. P(MMA-co-ST) copolymers showed two molecular weight profiles and two glass transition temperatures (T$_{g}$) in GPC and DMA measurements. At 30 $^{\circ}C$, the nanocomposites exhibited 83 and 91 % increases in their storage moduli relative to the neat copolymer because the silicate layers were dispersed uniformly in the polymer matrix.x.

The Processing and Mechanical Performance of Cellulose Nanofiber-based Composites

  • Nakagaito, Antonio Norio;Takagi, Hitoshi;Pandey, Jitendra Kumar
    • International Journal of Ocean System Engineering
    • /
    • 제1권4호
    • /
    • pp.180-184
    • /
    • 2011
  • Nanocomposites based on cellulose nanofibers have been studied for a considerable time since its first introduction, however real applications seem to have hardly developed to these days. The high-strength of cellulose nanofibers suggests the potential to reinforce plastics to produce composites for semi-structural or even structural applications. This paper discusses some of the attempts to produce such high-strength nanocomposites and the main challenges that have to be overcome to bring them into commercial products.

The Effect of Single Wall Carbon Nanotubes on the Dipole Orientation and Piezoelectric Properties of Polymeric Nanocomposites

  • Kang, Jin-Ho;Park, Cheol;Gaik Steven J.;Lowther Sharon E.;Harrison Joycelyn S.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.245-245
    • /
    • 2006
  • Recent studies of single wall carbon nanotube (SWNT)/polyimide nanocomposites indicate that these materials have a potential to provide the combination of structural integrity and sensing/actuation capability. This study shows the effect of the SWNT type and concentration on the dipole orientation and piezoelectric properties of the electroactive polymide nanocomposites using a thermally stimulated current (TSC) spectroscopy. These nanocomposites exhibit very thermally stable piezoelectric properties up to $150^{\circ}C$. This presentation will highlight the dipole orientation and electroactive characteristics of the SWNT/polyimide nanocomposites and discuss their potential multifunctional aerospace applications.

  • PDF