Acknowledgement
본 연구는 한국과학재단이 주관하는 중견연구자지원사업(No. 2021R1A2C3006382)의 지원을 받아 수행되었습니다.
References
- Al-Saleh, M.H., Sundararaj, U. (2011) Review of the Mechanical Properties of Carbon Nanofiber/Polymer Composites, Compos. Part A: Appl. Sci. & Manuf., 42(12), pp.2126~2142. https://doi.org/10.1016/j.compositesa.2011.08.005
- Cai, J.H., Li, J., Chen, X.D., Wang, M. (2020) Multifunctional Polydimethylsiloxane Foam with Multi-walled Carbon Nanotube and Thermo-Expandable Microsphere for Temperature Sensing, Microwave Shielding and Piezoresistive Sensor, Chem. Eng. J., 393, p.124805.
- Castaneda, P.P., Willis, J. (1995) The Effect of Spatial Distribution on the Effective behavior of Composite Materials and Cracked Media, J. Mech. & Phys. Solids, 43(12), pp.1919~1951. https://doi.org/10.1016/0022-5096(95)00058-Q
- Chan, L.Y ., Andrawes, B. (2010) Finite Element Analysis of Carbon Nanotube/Cement Composite with Degraded Bond Strength, Comput. Mater. Sci., 47(4), pp.994~1004. https://doi.org/10.1016/j.commatsci.2009.11.035
- Cui, X.Z., Li, J., Su, J.W., Jin, Q., Wang, Y.L., Cui, S.Q. (2019) Effect of Temperature on Mechanical Performance and Tensoresistivity of a New Sensor-Enabled Geosynthetic Material, J. Mater. Civil Eng., 31(6), p.04019060.
- Duan, H.L., Karihaloo, B.L. (2007) Effective Thermal Conductivities of Heterogeneous Media Containing Multiple Imperfectly Bonded Inclusions, Phys. Rev. B, 75(6), p.064206.
- Ellis, B.D., McDowell, D.L. (2017) Application-Specific Computational Materials Design Via Multiscale Modeling and the Inductive Design Exploration Method (IDEM), Integr. Mater. Manuf. Innov., 6(1), pp.9~35. https://doi.org/10.1007/s40192-017-0086-3
- Gobel, L., Konigsberger, M., Osburg, A., Pichler, B. (2018) Viscoelastic behavior of Polymer-Modified Cement Pastes: Insight from Downscaling Short-Term Macroscopic Creep Tests by Means of Multiscale Modeling, Appl. Sci., 8(4), p.487.
- Han, J., Liu, W., Wang, S., Du, D., Xu, F., Li, W., De Schutter, G. (2016) Effects of Crack and ITZ and Aggregate on Carbonation Penetration based on 3D Micro X-ray CT Microstructure Evolution, Constr. & Build. Mater., 128, pp.256~271. https://doi.org/10.1016/j.conbuildmat.2016.10.062
- Hussein, A., Kim, B. (2019) Micromechanics based FEM Study on the Mechanical Properties and Damage of Epoxy Reinforced with Graphene based Nanoplatelets, Compos. Struct., 215, pp.266~277. https://doi.org/10.1016/j.compstruct.2019.02.059
- Jang, D., Yoon, H.N., Nam, I.W., Lee, H.K. (2020) Effect of Carbonyl Iron Powder Incorporation on the Piezoresistive Sensing Characteristics of CNT-based Polymeric Sensor, Compos. Struct., 244, p.112260.
- Jin, L., Chortos, A., Lian, F., Pop, E., Linder, C., Bao, Z., Cai, W. (2018) Microstructural Origin of Resistance-strain Hysteresis in Carbon Nanotube Thin Film Conductors, Proc. Natl. Acad. Sci., 115(9), pp.1986~1991. https://doi.org/10.1073/pnas.1717217115
- Kil, T., Bae, J.H., Y ang, B., Lee, H.K. (2023) Multi-Level Micromechanics-based Homogenization for the Prediction of Damage behavior of Multiscale Fiber-Reinforced Composites, Compos. Struct., 303, p.116332.
- Kil, T., Jin, D.W., Yang, B., Lee, H.K. (2022) A Combined Experimental and Micromechanical approach to Investigating PTC and NTC Effects in CNT-Polypropylene Composites under a Self-heating Condition, Compos. Struct., 289, p.115440.
- Kim, G.M., Naeem, F., Kim, H.K., Lee, H.K. (2016) Heating and Heat-Dependent Mechanical Characteristics of CNT-Embedded Cementitious Composites, Compos. Struct., 136, pp.162~170. https://doi.org/10.1016/j.compstruct.2015.10.010
- Lee, W., Chung, I., Baek, K., Im, S., Cho, M. (2022) Multiscale Modeling to Characterize Electromechanical behaviors of CNT/Polymer Nanocomposites Considering the Matrix Damage and Interfacial Debonding, Mech. Adv. Mater. & Struct., 29(16), pp.2322~2341. https://doi.org/10.1080/15376494.2020.1861396
- Li, W., Dong, W., Guo, Y., Wang, K., Shah, S.P. (2022) Advances in Multifunctional Cementitious Composites with Conductive Carbon Nanomaterials for Smart Infrastructure, Cement & Concr. Compos., 128, p.104454.
- Mori, T., Tanaka, K. (1973) Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions, Acta metall., 21(5), pp.571~574. https://doi.org/10.1016/0001-6160(73)90064-3
- Nakano, H., Shimizu, K., Takahashi, S., Kono, A., Ougizawa, T., Horibe, H. (2012) Resistivity-Temperature Characteristics of Filler-Dispersed Polymer Composites, Polymer, 53(26), pp.6112~6117. https://doi.org/10.1016/j.polymer.2012.10.046
- Pal, G., Kumar, S. (2016) Multiscale Modeling of Effective Electrical Conductivity of Short Carbon Fiber-Carbon Nanotube-Polymer Matrix Hybrid Composites, Mater. & Des., 89, pp.129~136. https://doi.org/10.1016/j.matdes.2015.09.105
- Pan, Y ., Weng, G.J., Meguid, S.A., Bao, W.S., Zhu, Z.H., Hamouda, A.M.S. (2011) Percolation Threshold and Electrical Conductivity of a Two-Phase Composite Containing Randomly Oriented Ellipsoidal Inclusions, J. Appl. Phys., 110(12), p.123715.
- Park, M., Park, J.H., Y ang, B.J., Cho, J., Kim, S.Y ., Jung, I. (2018) Enhanced Interfacial, Electrical, and Flexural Properties of Polyphenylene Sulfide Composites Filled with Carbon Fibers Modified by Electrophoretic Surface Deposition of Multi-Walled Carbon Nanotubes, Compos. Part A: Appl. Sci. & Manuf., 109, pp.124~130. https://doi.org/10.1016/j.compositesa.2018.03.005
- Rubel, R.I., Ali, M.H., Jafor, M.A., Alam, M.M. (2019) Carbon Nanotubes Agglomeration in Reinforced Composites: A Review, AIMS Mater. Sci., 6(5), pp.756~780. https://doi.org/10.3934/matersci.2019.5.756
- Sanli, A., Muller, C., Kanoun, O., Elibol, C., Wagner, M.F.X. (2016) Piezoresistive Characterization of Multi-Walled Carbon Nanotube-Epoxy based Flexible Strain Sensitive Films by Impedance Spectroscopy, Compos. Sci. & Technol., 122, pp.18~26. https://doi.org/10.1016/j.compscitech.2015.11.012
- Wang, L., Aslani, F. (2019) A Review on Material Design, Performance, and Practical Application of Electrically Conductive Cementitious Composites, Constr. & Build. Mater., 229, p.116892.
- Wang, Y., Weng, G.J., Meguid, S.A., Hamouda, A.M. (2014) A Continuum Model with a Percolation Threshold and TunnelingAssisted Interfacial Conductivity for Carbon Nanotube-based Nanocomposites, J. Appl. Phys., 115(19), p.193706.
- Wen, S., Chung, D.D.L. (2006) The Role of Electronic and Ionic Conduction in the Electrical Conductivity of Carbon Fiber Reinforced Cement, Carbon, 44(11), pp.2130~2138. https://doi.org/10.1016/j.carbon.2006.03.013
- Weng, G. (1990) The Theoretical Connection between Mori-Tanaka's Theory and the Hashin-Shtrikman-Walpole Bounds, Int. J. Eng. Sci., 28(11), pp.1111~1120. https://doi.org/10.1016/0020-7225(90)90111-U
- Wu, W., Al-Ostaz, A., Cheng, A.H.D., Song, C.R. (2011) Computation of Elastic Properties of Portland Cement using Molecular Dynamics, J. Nanomechanics Micromech, 1(2), pp.84~90. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000026
- Yang, B.J., Shin, H., Lee, H.K., Kim, H. (2013) A Combined Molecular Dynamics/Micromechanics/Finite Element Approach for Multiscale Constitutive Modeling of Nanocomposites with Interface Effects, Appl. Phys. Lett., 103(24), p.241903.
- Yang, S. (2022) Interface and Interphase of Nanocomposites Tailored by Covalent Grafting of Carbon Nanotube: Hierarchical Multiscale Modeling, Int. J. Mech. Sci., 220, p.107160.
- Zhang, K., Li, G.H., Feng, L.M., Wang, N., Guo, J., Sun, K., Wang, M. (2017) Ultralow Percolation Threshold and Enhanced Electromagnetic Interference Shielding in Poly (L-lactide)/Multi-Walled Carbon Nanotube Nanocomposites with Electrically Conductive Segregated Networks, J. Mater. Chem. C, 5(36), pp.9359~9369. https://doi.org/10.1039/C7TC02948A
- Zhu, F., Park, C., Yun, G.J. (2021) An Extended Mori-Tanaka Micromechanics Model for Wavy CNT Nanocomposites with Interface Damage, Mech. Advan. Mater. & Struct., 28(3), pp.295~307. https://doi.org/10.1080/15376494.2018.1562135