• Title/Summary/Keyword: advanced driver assistance systems

Search Result 76, Processing Time 0.019 seconds

Dense Optical flow based Moving Object Detection at Dynamic Scenes (동적 배경에서의 고밀도 광류 기반 이동 객체 검출)

  • Lim, Hyojin;Choi, Yeongyu;Nguyen Khac, Cuong;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.277-285
    • /
    • 2016
  • Moving object detection system has been an emerging research field in various advanced driver assistance systems (ADAS) and surveillance system. In this paper, we propose two optical flow based moving object detection methods at dynamic scenes. Both proposed methods consist of three successive steps; pre-processing, foreground segmentation, and post-processing steps. Two proposed methods have the same pre-processing and post-processing steps, but different foreground segmentation step. Pre-processing calculates mainly optical flow map of which each pixel has the amplitude of motion vector. Dense optical flows are estimated by using Farneback technique, and the amplitude of the motion normalized into the range from 0 to 255 is assigned to each pixel of optical flow map. In the foreground segmentation step, moving object and background are classified by using the optical flow map. Here, we proposed two algorithms. One is Gaussian mixture model (GMM) based background subtraction, which is applied on optical map. Another is adaptive thresholding based foreground segmentation, which classifies each pixel into object and background by updating threshold value column by column. Through the simulations, we show that both optical flow based methods can achieve good enough object detection performances in dynamic scenes.

Lane Detection Based on Inverse Perspective Transformation and Machine Learning in Lightweight Embedded System (경량화된 임베디드 시스템에서 역 원근 변환 및 머신 러닝 기반 차선 검출)

  • Hong, Sunghoon;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • This paper proposes a novel lane detection algorithm based on inverse perspective transformation and machine learning in lightweight embedded system. The inverse perspective transformation method is presented for obtaining a bird's-eye view of the scene from a perspective image to remove perspective effects. This method requires only the internal and external parameters of the camera without a homography matrix with 8 degrees of freedom (DoF) that maps the points in one image to the corresponding points in the other image. To improve the accuracy and speed of lane detection in complex road environments, machine learning algorithm that has passed the first classifier is used. Before using machine learning, we apply a meaningful first classifier to the lane detection to improve the detection speed. The first classifier is applied in the bird's-eye view image to determine lane regions. A lane region passed the first classifier is detected more accurately through machine learning. The system has been tested through the driving video of the vehicle in embedded system. The experimental results show that the proposed method works well in various road environments and meet the real-time requirements. As a result, its lane detection speed is about 3.85 times faster than edge-based lane detection, and its detection accuracy is better than edge-based lane detection.

Lane Detection System Development based on Android using Optimized Accumulator Cells (Accumulator cells를 최적화한 안드로이드 기반의 차선 검출 시스템 개발)

  • Tsogtbaatar, Erdenetuya;Jang, Young-Min;Cho, Jae-Hyun;Cho, Sang-Bock
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.126-136
    • /
    • 2014
  • In the Advanced Driver Assistance Systems (ADAS) of smart vehicle and Intelligent Transportation System (ITS) for to detect the boundary of lane is being studied a lot of Hough Transform. This method detects correctly recognition the lane. But recognition rate can fall due to detecting straight lines outside of the lane. In order to solve this problems, this paper proposed an algorithm to recognize the lane boundaries and the accumulator cells in Hough space. Based on proposed algorithm, we develop application for Android was developed by H/W verification. Users of smart phone devices could use lane detection and lane departure warning systems for driver's safety whenever and wherever. Software verification using the OpenCV showed efficiency recognition correct rate of 93.8% and hardware real-time verification for an application development in the Android phone showed recognition correct rate of 70%.

Development of Traffic Prediction and Optimal Traffic Control System for Highway based on Cell Transmission Model in Cloud Environment (Cell Transmission Model 시뮬레이션을 기반으로 한 클라우드 환경 아래에서의 고속도로 교통 예측 및 최적 제어 시스템 개발)

  • Tak, Se-hyun;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.68-80
    • /
    • 2016
  • This study proposes the traffic prediction and optimal traffic control system based on cell transmission model and genetic algorithm in cloud environment. The proposed prediction and control system consists of four parts. 1) Data preprocessing module detects and imputes the corrupted data and missing data points. 2) Data-driven traffic prediction module predicts the future traffic state using Multi-level K-Nearest Neighbor (MK-NN) Algorithm with stored historical data in SQL database. 3) Online traffic simulation module simulates the future traffic state in various situations including accident, road work, and extreme weather condition with predicted traffic data by MK-NN. 4) Optimal road control module produces the control strategy for large road network with cell transmission model and genetic algorithm. The results show that proposed system can effectively reduce the Vehicle Hours Traveled upto 60%.

An Estimation Method for Location Coordinate of Object in Image Using Single Camera and GPS (단일 카메라와 GPS를 이용한 영상 내 객체 위치 좌표 추정 기법)

  • Seung, Teak-Young;Kwon, Gi-Chang;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.112-121
    • /
    • 2016
  • ADAS(Advanced Driver Assistance Systems) and street furniture information collecting car like as MMS(Mobile Mapping System), they require object location estimation method for recognizing spatial information of object in road images. But, the case of conventional methods, these methods require additional hardware module for gathering spatial information of object and have high computational complexity. In this paper, for a coordinate of road sign in single camera image, a position estimation scheme of object in road images is proposed using the relationship between the pixel and object size in real world. In this scheme, coordinate value and direction are used to get coordinate value of a road sign in images after estimating the equation related on pixel and real size of road sign. By experiments with test video set, it is confirmed that proposed method has high accuracy for mapping estimated object coordinate into commercial map. Therefore, proposed method can be used for MMS in commercial region.

Traffic Light Detection Using Color Based Saliency Map and Morphological Information (색상 기반 돌출맵 및 형태학 정보를 이용한 신호등 검출)

  • Hyun, Seunghwa;Han, Dong Seog
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.123-132
    • /
    • 2017
  • Traffic lights contain very important information for safety driving. So, the delivery of the information to drivers in real-time is a very critical issue for advanced driver assistance systems. However, traffic light detection is quite difficult because of the small sized traffic lights and the occlusion in real world. In this paper, a traffic light detection method using modified color based saliency map and morphological information is proposed. It shows 98.14% of precisions and 83.52% of recalls on computer simulations.

Road marking classification method based on intensity of 2D Laser Scanner (신호세기를 이용한 2차원 레이저 스캐너 기반 노면표시 분류 기법)

  • Park, Seong-Hyeon;Choi, Jeong-hee;Park, Yong-Wan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.313-323
    • /
    • 2016
  • With the development of autonomous vehicle, there has been active research on advanced driver assistance system for road marking detection using vision sensor and 3D Laser scanner. However, vision sensor has the weak points that detection is difficult in situations involving severe illumination variance, such as at night, inside a tunnel or in a shaded area; and that processing time is long because of a large amount of data from both vision sensor and 3D Laser scanner. Accordingly, this paper proposes a road marking detection and classification method using single 2D Laser scanner. This method road marking detection and classification based on accumulation distance data and intensity data acquired through 2D Laser scanner. Experiments using a real autonomous vehicle in a real environment showed that calculation time decreased in comparison with 3D Laser scanner-based method, thus demonstrating the possibility of road marking type classification using single 2D Laser scanner.

A Study on Evaluation Method of the HDA Test in Domestic Road Environment (국내도로 환경에서의 HDA 시험평가 방법에 관한 연구)

  • Bae, Geon Hwan;Kim, Bong Ju;Lee, Seon Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.39-49
    • /
    • 2019
  • Autonomous vehicle is a car which drives itself without any human interaction. SAE provides technical definitions for autonomous and international standards for test evaluation. Accordingly, automobile industry is actively researching development and evaluation of various ADAS (Advanced Driver Assistance Systems), : representative technology of autonomous technology. Recently, ADAS is in the commercialization level such as ACC, LKAS, AEB, and HDA etc. And it also has issues about safety evaluation. The purpose of HDA in ADAS is reduced the driving load on highway. It has a function which can maintain lane keeping and control distance from forward vehicle. This function is evaluated to be useful for accident prevention. Therefore, this paper proposes the safety evaluation scenario of HDA, considering the domestic highway design criteria and the situation that may arise on the actual highway. We compared and analyzed the data acquired through simulation and actual vehicle test. And verified the reliability of the proposed safety evaluation scenario. The verified result is expected safety evaluation of HDA is possible even under the bad condition, which cannot be tested.

A Study on Development of High Risk Test Scenario and Evaluation from Field Driving Conditions for Autonomous Vehicle (실도로 주행 조건 기반의 자율주행자동차 고위험도 평가 시나리오 개발 및 검증에 관한 연구)

  • Chung, Seunghwan;Ryu, Je Myoung;Chung, Nakseung;Yu, Minsang;Pyun, Moo Song;Kim, Jae Bu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.40-49
    • /
    • 2018
  • Currently, a lot of researches about high risk test scenarios for autonomous vehicle and advanced driver assistance systems have been carried out to evaluate driving safety. This study proposes new type of test scenario that evaluate the driving safety for autonomous vehicle by reconstructing accident database of national automotive sampling system crashworthiness data system (NASS-CDS). NASS-CDS has a lot of detailed accident data in real fields, but there is no data of accurate velocity in accident moments. So in order to propose scenario generation method from accident database, we try to reconstruct accident moment from accident sketch diagram. At the same step, we propose an accident of occurrence frequency which is based on accident codes and road shapes. The reconstruction paths from accident database are integrated into evaluation of simulation environment. Our proposed methods and processor are applied to MILS (Model In the Loop Simulation) and VILS (Vehicle In the Loop Simulation) test environments. In this paper, a reasonable method of accident reconstruction typology for autonomous vehicle evaluation of feasibility is proposed.

Performance Analysis of GPS/BDS Integrated Precise Positioning System Considering Visibility in Urban Environments

  • Noh, Jae Hee;Lee, Sun Yong;Lim, Deok Won;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.1
    • /
    • pp.31-40
    • /
    • 2019
  • In recent years, Intelligent Transport Systems (ITS) and Autonomous Vehicle Technology have actively studied around the world. In order to achieve the purpose of Advanced Driver Assistance System (ADAS) and Autonomous Vehicle Technology, it must be obtained accurate and reliable positioning. However, the problem of positioning in the urban area is a low position accuracy caused by the reduction of the number of visible satellites due to high buildings. In this paper, we analyzed the availability of precise positioning system in urban area are using GPS/BDS integrated system. For this study, GPS and BDS satellite signals were collected using two low-cost receivers in the open sky and a designed software based platform for precise positioning performance analysis. And we analyzed the precise positioning performance by changing the mask angle considering the urban area. From the results, it can be confirmed that the performance of precise positioning of GPS only and BDS only decrease in the environment where mask angle is $40^{\circ}$ to $45^{\circ}$, however, GPS/BDS integrated system maintains high performance of precise positioning.