• Title/Summary/Keyword: adsorption removal

Search Result 1,338, Processing Time 0.022 seconds

Decolorization of Acid Orange II from Aqueous Solutions using Loess (황토를 이용한 Acid Orange II의 색도제거)

  • Park, Jae Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.141-146
    • /
    • 2011
  • Loess, a natural clay, was evaluated as an adsorbent for the decolorization of Acid Orange II, an azo and reactive dye, from aqueous solution. Adsorption studies were performed at $30^{\circ}C$ and the effect of reaction time, loess dosage, initial concentration, loess particle size, pH, agitation rate were investigated to determine the optimum operation conditions. The removal efficiencies of color were measured to evaluate the effectiveness of loess. From this study, it was found that optimal reaction time was 10 min. Color removal efficiencies of Acid Orange II were increased as higher loess dosage, initial concentration and agitation rate. However, color removal efficiencies decreased when pH is high and loess particle becomes large. Adsorption of Acid Orange II fitted to the pseudo-second-order rate kinetics more than first-order rate kinetics. Langmuir and Freundlich adsorption isotherm constants and correlation coefficients were calculated and compared. It was concluded that the adsorption data of Acid Orange II onto loess fitted to the Freundlich model more than Langmuir model.

Removal of Heavy Metal Ions from Aqueous Solution by Leaves (식물 잎을 이용한 중금속 이온의 제거에 관한 연구)

  • Kim, Jong-Geu;Lee, Jang-Hoon;Lee, Su-Yong;Na, Kyung-Won;Ra, Kyu-Hwan;Choi, Han-Young
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.2
    • /
    • pp.31-39
    • /
    • 2009
  • In this research, I carried out the adsorption and removal test of Pb, Ni, Co and Cu ions using organic substances spread out any where in the nature which can be obtained easily from our neighbor-such as Paulownia coreana, Pinus densiflora, Juniperus chinesis, Quercus dentata, Magnolia kobus, Platanus occidentalis, Gingko biloba, Diospyros kaki leaves. As the result of the research to find the best optional condition for the adsorption and removal, shows that the adsorption and removal ratio of Pb ion by a Paulownia coreana raw leaves is 99% at $70^{\circ}C$, those of Ni ion and Co ion by Magnolia kobus formalin treatment leaves are 79% at $70^{\circ}C$, 97% at $40^{\circ}C$ respectively. And that of Cu ion by Platanus occidentalis treatment leaves is 97% at $50^{\circ}C$ in mixed solution. As the result of comparing the removal ratio by raw leaves and formalin treatment leaves, the removal ratio of treatment is 30~90% more effective than raw leaves in most cases. And I concluded Pb > Cu > Co > Ni ion in multiple solution and Co > Ni > Cu >Pb ion in single solution after testing adsorption and removal ratio of mixed solution separately as time goes by. In general, the reactions were completed within first 5 minutes. The test result of measuring the hydrolysable tannin content of each leaf shows that an overcup Quercus dentata is 11.36%, a Diospyros kaki is 10.81% and the rest of them are 2.49~4.12% in raw leaves cases. In treatment leaves cases, an overcup Quercus dentata is 3.23% and the others are less than 1%.

Adsorption Characteristics of Heavy Metals by Various Forest Humic Substances

  • Ahn, Sye-Hee;Koo, Bon-Wook;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.73-82
    • /
    • 2003
  • Various forest humic substances were collected at different climate regions with different forest types, and adsorption of heavy metals such as Cu(II), Zn(II), Cd(II) and Cr(III) were characteristically conducted to obtain optimal adsorption conditions and to evaluate the removal efficiency of heavy metals by each forest humic substance. The adsorption isotherms for Cu(II), Zn(II), Cd(II) and Cr(III) conformed to Langmuir's equation. In the stirred reactor, the removal efficiencies of Cu(II), Zn(II) and Cd(II) by forest humic substances were more than 90% but that of Cr(III) was less than 60%. The adsorption capacities of heavy metals in the stirred reactor were considerably varied depending on the type of forest humic substances. Among humic substances, the one from deciduous forest at subtropical region showed the highest removal efficiency for Cu(II). There was no significant difference in removal efficiency by each heavy metal depending on reaction temperature ranged from 20 to 50oC except for Cr(III), and the adsorptions of Cu(II), Zn(II) and Cd(II) were occurred rapidly in the incipient stage within 10 min, while Cr(III) needed more reaction time to be adsorbed. The stirred and packed bed column reactors showed similar adsorption characteristics of heavy metals by humic substances, but the removal efficiency was considerably higher in the packed bed column reactor than in the stirred reactor. Therefore, in actual operation process, a continuous packed bed column reactor was more economical.

Adsorption Characteristics of BTEX on Dust Collecting Electrode Coated with Activated Carbon (활성탄으로 코팅된 집진전극의 BTEX 흡착특성)

  • Nam, Sangchul;Kim, Hyun Jung;Kim, Kwang Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.773-779
    • /
    • 2013
  • This study was performed to provide the basic data for the function of BTEX removal for compact electrostatic precipitator which are applicable to indoor environment (or closed spaces). For this purpose, the adsorption equilibrium test was conducted for BTEX of activated carbon sheet (ACS) and activated carbon (AC), and the adsorption characteristics of AC and ACS were evaluated using the Langmuir constant which was obtained from the adsorption characteristics, adsorption capacity and regression calculation. The surface area and adsorption pore volume of ACS reduced by 70% and 86%, respectively, as compared to those of AC, and the adsorption capacities of BTEX also showed a similar level. Thus, it is considered that ACS applied electrostatic precipitator is able to remove dust and BTEX simultaneously.

Removal of Cu (II) from aqueous solutions using magnetite: A kinetic, equilibrium study

  • Kalpakli, Yasemen
    • Advances in environmental research
    • /
    • v.4 no.2
    • /
    • pp.119-133
    • /
    • 2015
  • Water pollution means that the physical, chemical and biological properties of water are changing. In this study, adsorption was chosen as the treatment method because it is an eco-friendly and low cost approach. Magnetite is a magnetic material that can synthesize chemical precipitation. Magnetite was used for the removal of copper in artificial water samples. For this purpose, metal removal from water dependent on the pH, initial concentration of metal, amount of adsorbent and effect of sorption time were investigated. Magnetite was characterized using XRD, SEM and particle size distribution. The copper ions were determined by atomic absorption spectrometry. The adsorption of copper on the magnetite was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 10 to $50mg\;l^{-1}$. Optimum conditions for using magnetite were found to be concentration of $10mg\;L^{-1}$, pH: 4.5, contact time: 40 min. Optimum adsorbent was found to be 0.3 gr. Furthermore, adsorption isotherm data were analyzed using the Langmuir and Freundlich equations. The adsorption data fitted well with the Freundlich ($r^2=0.9701$) and Langmuir isotherm ($r^2=0.9711$) equations. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were described well by a pseudo-second-order kinetic model.

Cr(VI) removal using Fe2O3-chitosan-cherry kernel shell pyrolytic charcoal composite beads

  • Altun, Turkan;Ecevit, Huseyin
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.426-438
    • /
    • 2020
  • In this study, cherry kernel shell pyrolytic charcoal was synthesized (CKSC) and composite beads were obtained by blending this pyrolytic charcoal with chitosan and Fe2O3 nanoparticles (Fe-C-CKSC). Cr(VI) adsorption from aqueous solutions by Fe-C-CKSC composite beads and CKSC adsorbents was studied comparatively. The effects of Cr(VI) initial concentration, adsorbent dosage, contact time, pH and temperature parameters on Cr(VI) adsorption were investigated. Adsorption reached an equilibrium point within 120 min for CKSC and Fe-C-CKSC adsorbents. The maximum Cr(VI) removal was obtained at the initial pH value of 1.56 for CKSC and 2.00 for Fe-C-CKSC. The optimum adsorbent dosage was found to be 5 g/L for CKSC and 3 g/L for Fe-C-CKSC. Based on the Langmuir model, the maximum adsorption capacities were calculated as 14.455 mg/g and 47.576 mg/g for CKSC and Fe-C-CKSC, respectively. Thermodynamic and kinetic studies were performed. As a result of adsorption kinetics calculations, adsorption was found to be consistent with the pseudo second order kinetic model. Characterization of the synthesized adsorbents was performed by SEM, BET, FTIR and elemental analysis. This study has shown that low cost adsorbents CKSC and Fe-C-CKSC can be used in Cr(VI) removal from aqueous solutions.

Adsorption of copper ions from aqueous solution using surface modified pine bark media (표면개질된 소나무 수피를 이용한 수용액의 구리이온 흡착)

  • Park, Se-Keun;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.2
    • /
    • pp.131-140
    • /
    • 2019
  • This study used a packed column reactor and a horizontal flow mesh reactor to examine the removal of copper ions from aqueous solutions using pine bark, a natural adsorbent prepared from Korean red pine (Pinus densiflora). Both equilibrium and nonequilibrium adsorption experiments were conducted on copper ion concentrations of 10mg/L, and the removals of copper ions at equilibrium were close to 95%. Adsorption of copper ions could be well described by both the Langmuir and Freundlich adsorption isotherms. The bark was treated with nitric acid to enhance efficiency of copper removal, and sorption capacity was improved by about 48% at equilibrium; mechanisms such as ion exchange and chelation may have been involved in the sorption process. A pseudo second-order kinetic model described the kinetic behavior of the copper ion adsorption onto the bark. Regeneration with nitric acid resulted in extended use of spent bark in the packed column. The horizontal flow mesh reactor allowed approximately 80% removal efficiency, demonstrating its operational flexibility and the potential for its practical use as a bark filter reactor.

Removal of reactive black 5 dye by using polyoxometalate-membrane

  • Topaloglu, Ali Kemal;Yildirim, Yilmaz
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • A POM-membrane was fabricated by immobilizing a keggin type polyoxometalate (POM) H5PV2Mo10O40 onto the surface of microporous flat-sheet polymeric polyvinylidene fluoride (PVFD) membrane using a chemical deposition method. The POM-membrane was characterized by FT-IR, SEM and EDX to confirm existing of the POM onto the membrane surface. The POM-membrane was used to remove an anionic textile dye (Reactive Black 5 named as an RB5) from aqueous phases with a cross-flow membrane filtration and a batch adsorption system. The dye removal efficiency of the POM-membrane using the cross-flow membrane filtration system and the batch adsorption system was about 88% and 98%, respectively. The influence factors such as contact time, adsorbent dosage, pH, and initial dye concentration were investigated to understand the adsorption mechanism of the RB5 dye onto the POM-membrane. To find the best fitting isotherm model, Langmuir, Freundlich, BET and Harkins-Jura isotherm models were used to analyze the experimental data. The isotherm analysis showed that the Langmuir isotherm model was found to the best fit for the adsorption data (R2 = 0.9982, qmax = 24.87 mg/g). Also, adsorption kinetic models showed the pseudo second order kinetic model was found the best model to fit the experimental data (R2 = 0.9989, q = 8.29 mg/g, C0 = 15 ppm). Moreover, after four times regeneration with HNO3 acid, the POM-membrane showed high regenerability without losing dye adsorption capacity.

Nanoporous carbon synthesized from grass for removal and recovery of hexavalent chromium

  • Pathan, Shahin A.;Pandita, Nancy S.
    • Carbon letters
    • /
    • v.20
    • /
    • pp.10-18
    • /
    • 2016
  • Nanoporous carbon structures were synthesized by pyrolysis of grass as carbon precursor. The synthesized carbon has high surface area and pore volume. The carbon products were acid functionalized and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscopy, and Energy Dispersive X-ray microanalysis. Acid functionalized nanoporous carbon was explored for use in removal of toxic Cr(VI) ions from aqueous media. An adsorption study was done as a function of initial concentration, pH, contact time, temperature, and interfering ions. The experimental equilibrium data fits well to Langmuir isotherm model with maximum monolayer adsorption capacity of 35.335 mg/g. The results indicated that removal obeys a pseudo-second-order kinetic model, and that equilibrium was reached in 10 min. A desorption study was done using NaOH. The results of the present study imply that acid functionalized nanoporous carbon synthesized from grass is an efficient, renewable, cost-effective adsorbent material for removal of hexavalent chromium due to its faster removal rate and reusability.

Phosphate removal in water by mesostructure based on titanium and silica (티타늄과 실리콘 기반의 메조구조체를 이용한 수중의 인 제거)

  • Lee, Seung-Yeon;Choi, Jae-Woo;Lee, Sang-Hyup;Lee, Ki-Bong;Hong, Seok-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.725-730
    • /
    • 2011
  • In this study, it was investigated that the feasibility of utilizing inorganic mesostructures for removal of phosphate in water. The comparison of the efficiency for phosphate adsorption between inorganic mesostructures was conducted. X-ray diffraction(XRD) and Brunauer-Emmett-Teller(BET) methods were used to characterize these mesostructures. The efficiencies of silica and titanium mesostructures for the removal of phosphate from aqueous solution were investigated. Equilibrium data were analyzed using the Langmuir isotherm. The maximum adsorption capacities of mesostructure adsorbents were found to be 49.3 and 19.5 mg $g^{-1}$ for the titanium and silica mesostructures, respectively. The adsorption kinetics was described by a pseudo third-order kinetic model. The results from this study indicated that the titanium mesostructure has the potential to be utilized for the cost-effective removal of phosphate from wastewater.