• Title/Summary/Keyword: adsorption of heavy metals

Search Result 322, Processing Time 0.024 seconds

Formation of iron oxides from acid mine drainage and magnetic separation of the heavy metals adsorbed iron oxides

  • Kwon, Hee-won;Kim, JeongJin;Ha, Dong-Woo;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.28-32
    • /
    • 2016
  • There are a few thousand abandoned metal mines in South Korea. The abandoned mines cause several environmental problems including releasing acid mine drainage (AMD), which contain a very high acidity and heavy metal ions such as Fe, Cu, Cd, Pb, and As. Iron oxides can be formed from the AMD by increasing the solution pH and inducing precipitation. Current study focused on the formation of iron oxide in an AMD and used the oxide for adsorption of heavy metals. The heavy metal adsorbed iron oxide was separated with a superconducting magnet. The duration of iron oxide formation affected on the type of mineral and the degree of magnetization. The removal rate of heavy metal by the adsorption process with the formed iron oxide was highly dependent on the type of iron oxide and the solution pH. A high gradient magnetic separation (HGMS) system successfully separated the iron oxide and harmful heavy metals.

Study on the adsorption of Heavy Metals by Chitin, Chitosan, Cellulose and its Composite Beads (Chintin, Chitosan, Cellulose 및 혼합 Beads의 중금속 이온 흡착특성에 관한 연구)

  • 전수진;유병태
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.2
    • /
    • pp.1-12
    • /
    • 1995
  • Under accelerated industrial developments environment pollution comes out to be very stirious. Especially the ions of heavy metal from wastewater, even if they are minimal, accumulated in ecology circle and do finally injury to human health. The general process for removal of heavy metals include coagulation and following sedimentation, ion -exchange and active carbon adsorption and sedimentation that applicate in popular, needs the expense of coagulant the additional treatment of sludge on the general process of coagulation and sedimentation. It is also a serious problem that the second pollution caused by coagulant. However chelating adsorption that uses natural chelating high- molecular compound has not pollution problem Among chelating high- molecules, the diminishing chitin that contained in crustaceans as crawfish and crab in our country with affluent water resources are easy to get. So it is advantageous to use this ubiquitous material for removing heavy metals because we could reuse natural resource. In this research, the author tested the effectiveness of the adsorption and removal of heavy metal ions by chitin and its derivatives. Chitin and cellulose became beads and used as flocculant, in this test. The results are as follows . First, bead showed higher removal ratio than powder in the comparative test on adsorbents such as chitin, chitosan and cellulose. Secondly, in the variety test by the kinds of adsorbent and time. chitosan bead and cellulose bead that showed the highest removal ratio. One hour need to remove the ions of heavy metal. Thirdly, the results of the adsorption degree test by pH revealed high removal ratio adsorption of chitin, cellulose and chitosan bead in alkalin condition but chitosan bead in acidic condition.

  • PDF

Soil Adsorption Characteristics of Heavy Metals and Antibiotics in Piggery Waste Fertilizer (양돈 퇴, 액비 내 중금속 및 항생제의 토양 흡착특성 연구)

  • Oa, Seong Wook
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.365-374
    • /
    • 2012
  • Due to the wide use of feed additives on pig farms, large content of heavy metals and antibiotics have been found in piggery wastes. More than 90 % of piggery wastes were applied to crop field in Korea. The metals and antibiotics originated from piggery waste in the soil may affect plant growth and human health. To examine the adsorption capacity and residual ratio of heavy metals and antibiotics to the soil, a couple of jar test and leaching tests were conducted. While 86.4 % of zinc and 68% of copper applied were adsorbed to soil particles, while over than 60% of antibiotics in pig manure liquid fertilizer were leaked out to effluent.

Adsorption of Cadmium and Lead on Organobentonite (유기 벤토나이트에 의한 카드뮴과 납의 흡착특성)

  • 유지영;최재영;박재우
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.21-29
    • /
    • 2001
  • Organobentonite modified with hexadecyltrimethylammonium (HDTMA) was used to quantify adsorption of heavy metals. Adsorption of cadmium and lead increased with increasing pH and soil/solution ratio. Based on these experiments, an optimal soil/solution ratio and an optimal pH was selected. Adsorption experiments with cadmium and lead were conducted to quantify adsorption selectivity on bentonite and organobentonite. Adsorption of heavy metals on organobentonite was slightly reduced relative to bentonite. Because of competition between cadmium and lead, adsorption of each metal was reduced due to the presence of the other. Adsorption selectivity of cadmium was higher than lead. This study used the principle of hard soft-acid-base (HSAB) to interpret adsorption.

  • PDF

A Basic Study for Removal of Heavy Metal Elements from Wastewater using Spent Lithium-Aluminum-Silicate(LAS) Glass Ceramics (사용 후 유리세라믹(Lithium-Aluminum-Silicate)을 활용한 중금속 제거 기초 연구)

  • Go, Min-Seok;Wang, Jei-Pil
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.49-55
    • /
    • 2022
  • In this study, the heavy metal ions (of Pb, Cd, Cr, and Hg) in wastewater were removed using a spent Li2O-Al2O3-SiO2-based crystallized glass previously used as an induction top plate material. Changes in the removal efficiency of heavy metals according to different reaction parameters, such as the amount of zeolite used as a heavy-metal adsorbent, adsorption time, initial concentration of the heavy metals, and pH of the initial solution, were investigated. As the amount of zeolite added increased, the heavy-metal removal efficiency also increased. Adsorption time had a considerable influence on adsorption characteristics, and the removal efficiency of all heavy metals increased with increasing adsorption time. In the case of Cd, the removal efficiency was greatly improved depending on the adsorption time. The initial concentration of the heavy-metal solution did not affect the removal efficiency; however, the initial pH of the heavy-metal solution affected the removal efficiency. More specifically, the removal efficiency of Cd increased while that of Pb and Cr decreased with increasing pH. The adsorption characteristics of Hg were not significantly affected by pH.

A study on the Removal of Heavy Metals from Industrial Wastewater by Treatment with Discarded Automotive Tires (폐 타이어에 의한 고장폐수 내의 중금속 제거에 관한 연구)

  • Choung, Youn Kyoo;Min, Dal Ki;Oh, Hyun Je
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.4
    • /
    • pp.29-42
    • /
    • 1986
  • This study is an experimental research on the adsorption capacity and the adsorption system utilizing Discarded Automotive Tires(DAT) and Powdered or Granular Activated Carbon(PAC or GAC) for the removal of heavy metals, Ag(I), Cd(II), Cu(II), Zn(II). Batch shaking test was conducted to determine the adsorption capacity of DA T and PAC in removing the heavy metals from aqueous wastes; and laboratory-scale column experiment was performed to present design factors affecting the optimum design of adsorption column with DAT and GAC, through the concept of Bed Deph/Service Time(BDST). As results, DAT has been proven to be a good adsorbent will its adsorption capacity not falling behind PAC or GAC. Factors affecting heavy metals removals were amount of adsorbents, initial concentrations, pH and so on. BDST equations were compared with values presented by the breakthrough data from adsorption system.

  • PDF

A Study on the Preparation of the Fly ash Adhesion-Activated Carbon and on the Removal of Heavy Metals (석탄회부착활성탄의 제조 및 중금속 제거에 관한 연구)

  • 문옥란;신대윤;고춘남
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.1-8
    • /
    • 1999
  • This study was aimed ultimately to develop an adsorption process treating heavy metal wastewater by utilizing activated carbon using flyash. The affecting factors in adsorption process on heavy metal by flyash adhesion-activated carbon are s follows. Factors such as pH, and quality of activated carbon, and reaction time made batch adsorption isotherm described adsorption capacity was made use of the investigation to evaluate adsorptive possibility of heavy metal.As the results of this study, H ion has influence on adsorption of heavy metal if pH is low. As reaction time is transformed, factors such as optimum reaction time is taken into consideration an adsorptive process of heavy metal because an adsorption and a reduction process occur. Adsorption isotherm of adhesion-activated carbon was generally obeyed to Freundlich formular than Langmuir formular and Freundlich constant, l/n were obtained in the range of 0.1~0.5.

  • PDF

Adsorption Characteristics of Heavy Metals in Wastewater on Bone Charcoal (Bone Charcoal에 의한 폐수증의 중금속 흡착특성)

  • Chung, Paul-Gene;Kwak, Dong-Heui;Lee, Jae-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.555-563
    • /
    • 2000
  • The study was conducted to evaluate the adsorption equilibrium of heavy metals on bone charcoal made of livestock bone which was sintered at $550{\sim}600^{\circ}C$. Analysis of bone charcoal by XRD and FT-IR showed that crystal structure was similar to that of synthetic hydroxyapatite. Adsorption equilibrium capacity of single component (Pb, Cd, and Zn) on bone charcoal could be expressed as Langmuir, Freundlich, and Sips equations. Sips isotherm was best among the three isotherms. The values predicted by IAST(ideal adsorbed solution theory) showed good relationship to the experimental data in multicomponent adsorption equilibrium. Adsorption affinity was in order of Pb, Cd, and Zn. The order was same in case of activated carbon or synthetic hydroxyapatite. Through the study results. it would be expected that bone charcoal made of livestock could be used in field of wastewater treatment plants as adsorbent to remove heavy metal.

  • PDF

Surface Analysis and Heavy Metal Adsorption Evaluation of Chemically Modified Biochar Derived from Starfish (Asterina pectinifera) (화학적 개질을 통한 별 불가사리 바이오차 표면 분석 및 중금속 흡착 효율 평가)

  • Jang, Ha Rin;Moon, Deok Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.82-94
    • /
    • 2022
  • In this study, chemically modified biochar (NSBP500, KSBP500, OSBP500) derived from starfish was utilized to improve the adsorption ability of the SBP500 (Starfish Biochar Pyrolyzed at 500℃) in a solution contaminated with heavy metals. According to the biochar modification performance evaluation batch tests, the removal rate and adsorption amount of NSBP500 increased 1.4 times for Cu, 1.5 times for Cd, and 1.2 times for Zn as compared to the control sample SBP500. In addition, the removal rate and adsorption amount of KSBP500 increased 2 times for Cu, 1.8 times for Cd, and 1.2 times for Zn. The removal rate and adsorption amount of OSBP500 increased 5.8 times for Cu. The FT-IR analysis confirmed the changes in the generation and movement of new functional groups after adsorption. SEM analysis confirmed Cu in KSBP500 was in the form of Cu(OH)2 and resembled the structure of nanowires. The Cd in KSBP500 was densely covered in cubic form of Cd(OH)2. Lead(Pb) was in the form of Pb3(OH)2(CO3)2 in a hexagonal atomic layer structure in NSBP500. In addition, it was observed that Zn was randomly covered with Zn5(CO3)2(OH)6 pieces which resembled plates in KSBP500. Therefore, this study confirmed that biochar removal efficiency was improved through a chemical modification treatment. Accordingly, adsorption and precipitation were found to be the complex mechanisms behind the improved removal efficiency in the biochar. This was accomplished by electrostatic interactions between the biochar and heavy metals and ion exchange with Ca2+.

Bacteria and Fungi as Alternatives for Remediation of Water Resources Polluting Heavy Metals

  • Joo, Jin-Ho;Hussein, Khalid A.;Hassan, Sedky H.A.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.4
    • /
    • pp.600-614
    • /
    • 2011
  • Classical methods which used for removal of heavy metals from contaminated water are adsorption, precipitation, coagulation, ion exchange resin, evaporation, and membrane processes. Microbial biosorption can be used for the removal of contaminated waters with pollutants such as heavy metals and dyes which are not easily biodegradable. Microbial biosorbents are inexpensive, eco friendly and more effective for the removal of toxic metals from aqueous solution. In this review, the bacterial and fungal abilities for heavy metals ions removal are emphasized. Environmental factors which affect biosorption process are also discussed. A detailed description for the most common isotherm and kinetic models are presented. This article reviews the achievements and the current status of bacterial and fungal biosorption technology for heavy metals removal and provides insights for further researches.