• Title/Summary/Keyword: adsorption membrane filtration

Search Result 55, Processing Time 0.021 seconds

Effects of Membrane Size and Organic Matter on Membrane Fouling (천연유기물질의 특성과 막의 종류에 따른 막오염 메카니즘 분석)

  • Jung, Chul-Woo;Son, Hee-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1046-1054
    • /
    • 2006
  • The raw water DOC contained 39.3% of hydrophilics, 42.9% of hydriophobic, and 17.8% of transphilic. The hydrophobic fraction in this raw water was mostly fulvic acid. Fulvic acid comprised of 62% and the rest was humic acid(38%). There was more carboxylic acid functional group(64%) than phenolic group(36%). HPI-N and HPI-C comprised of 17% and 22% in the hydrophilic portion, respectively. The fouling mechanisms on the membrane surface and into its porous structure were analyzed in terms of several kinetic models. In order to analyze the fouling kinetics, the various kinetic models described in this paper were used to fit the experimental results. The kinetic models and kinetic constants obtained for each operation condition. The permeate flux was rapidly declined by simultaneous pore blocking and cake formation. Also, the permeate flux declined with decreasing internal pore size resulted from organic deposition into the membrane pore. The results of the membrane fouling test using UF membrane according to NOM fractions. HPI-N caused more fouling than HPI-C. Humic acid caused more fouling than fulvic acid probably due to higher adsorption capacity. Since humic acid has higher adsorption capacity than fulvic acid, it would be more adsorbed onto the membrane pores.

Separation Technologies for the Removal of Nitrate-Nitrogen from Aqueous Solution (수용액으로부터 질산성질소 제거를 위한 기술)

  • Seo, Yang Gon;Jung, Se Yeong
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • At high nitrate concentrations, water must be treated to meet regulated concentrations because it results in threat to human health and eutrophication of natural water. However, it is almost impossible to remove nitrate by conventional water treatment methods such as coagulation, filtration and precipitation, due to its high water solubility. Therefore, other technologies including adsorption, ion exchange, reverse osmosis, denitrification, and electrodialysis are required to effectively remove nitrate. Each of these technologies has their own strengths and drawbacks and their feasibility is weighted against factors such as cost, water quality improvement, residuals handling, and pre-treatment requirements. An adsorption technique is the most popular and common process because of its cost effectiveness, ease of operation, and simplicity of design. Surface modifications of adsorbents have been enhanced their adsorption of nitrate. The nitrate-selective membrane process of electrodialysis reversal and reverse osmosis have proven over time and at many locations to be highly effective in removing nitrate contaminating problems in aqueous solutions. Both electrodiaysis and reverse osmosis methods generate highly concentrated wastes and need careful consideration with respect to disposal.

Evaluation of Oil Pollutants Removal in Seawater as Pretreatment Process for Reverse Osmosis Desalination Process (역삼투식 해수담수화의 전처리공정으로서 유분 제거의 평가)

  • ;Okada Mitsumasa
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.205-209
    • /
    • 2003
  • The various pretreatment processes were evaluated for removal of oil pollutants with weathered oil contaminated seawater in a reverse osmosis desalination process. Weathered oil contaminated seawater was made by biodegradation and photooxidation with oil containing seawater. Coagulation, ultrafiltration, advanced oxidation processes and granular activated carbon filtration was used with pretreatment for dissolved organic carbon. Crude oil was removed but. weathered oil contaminated seawater was not removed by biodegradation and coagulation. DOC and E260 was removed with about 20 % and 40 % by membrane filter of cut off molecular weight 500. So, the most of dissolved organic carbon in weathered oil contaminated seawater was revealed that molecular weight was lower than 500. It is difficult to remove DOC in weathered oil contaminated seawater by advanced oxidation processes treatment, but, E260 was removed more high. However, DOC in weathered oil contaminated seawater was easily adsorbed to GAC. It is revealed that DOC was removed by adsorption.

  • PDF

Observations of Treatment Efficiency and Fouling in Submerged Membrane Filtration Treating High-Turbidity Source Water (고탁도 원수대응 침지식 멤브레인 여과에서 공기폭기 및 용액조성에 따른 파울링 및 처리효율 관찰)

  • Jang, Hoseok;Byun, Youngkwon;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.77-83
    • /
    • 2017
  • Transient behavior of fouling resistance was observed with a laboratory-scaled, submerged microfiltration membrane system treating high-turbidity source water consisting of inorganic silica particles and humic acid. Fouling mitigation efficiency with inorganic silica particles caused by aeration was reduced significantly as both humic acid and calcium ion existed together. Scanning electron microscopic observations showed that humic acid was adsorbed onto the surface of inorganic silica particles in the presence of calcium. Turbidity removal was achieved almost completely by submerged MF system regardless of feed compositions. However, the $UV_{254}$ removal of humic acid was improved in the presence of both calcium and inorganic silica particles. Additionally, increasing air-flow rate tended to increase $UV_{254}$ removal efficiency higher than 80%. This may be caused by back-transport of humic acid enhanced by inorganic silica particles providing surface for organic adsorption in the presence of calcium.

Operating Optimization and Economic Evaluation of Multicomponent Gas Separation Process using Pressure Swing Adsorption and Membrane Process (압력 순환 흡착과 막 분리공정을 이용한 다성분 기체의 분리공정 조업 최적화 및 경제성 평가)

  • Kim, Hansol;Lee, Jaewook;Lee, Soobin;Han, Jeehoon;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • At present, carbon dioxide ($CO_2$) emission, which causes global warming, is a major issue all over the world. To reduce $CO_2$ emission directly, commercial deployment of $CO_2$ separation processes has been attempted in industrial plants, such as power plant, oil refinery and steelmaking plant. Besides, several studies have been done on indirect reduction of $CO_2$ emission from recycle of reducing gas (carbon monoxide or hydrogen containing gas) in the plants. Unlike many competing gas separation technologies, pressure swing adsorption (PSA) and membrane filtration are commercially used together or individually to separate a single component from the gas mixture. However, there are few studies on operation of sequential separation process of multi-component gas which has more than two target gas products. In this paper, process simulation model is first developed for two available configurations: $CO_2$ PSA-CO PSA-$H_2$ PSA and $CO_2$ PSA-CO PSA-$H_2$ membrane. Operation optimization and economic evaluation of the processes are also performed. As a result, feed gas contains about 14% of $H_2$ should be used as fuel than separating $H_2$, and $CO_2$ separation should be separated earlier than CO separation when feed gas contains about 30% of $CO_2$ and CO. The simulation results can help us to find an optimal process configuration and operation condition for separation of multicomponent gas with $CO_2$, CO, $H_2$ and other gases.

Preparation of Minimally Processed Mulberry (Morus spp.) Juices (최소가공기술을 이용한 오디 과실주스의 제조)

  • Kim, In-Sook;Lee, Jun-Young;Rhee, Soon-Jae;Youn, Kwang-Sup;Choi, Sang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.321-328
    • /
    • 2004
  • Raw mulberry (Morus spp.) juice was prepared by minimal processing using several filter aids, fining agents, and clarifying enzymes, followed by filtration, centrifugation, and membrane filtration. Control of browning in minimally processed mulberry juices by anti-browning agents, sodium hydrosulfite, L-ascorbic acid, citric acid, and NaCl, was investigated using quantitative measurements of color changes during storage. Clarification of mulberry juice was improved by adding several filter aids, fining agents, and enzymes, followed by filtration and centrifugation. Several fining agents, including chitosan, chitin, PVPP, gelatin, and casein at a concentration of 1%, and combination of ultrafiltration and centrifugation at 8,000 rpm were not suitable for clarification of juice owing to strong adsorption of anthocyanin pigment. Combination of $0.01\;{\mu}m$ membrane filtration and centrifugation at 8,000 rpm was effective for clarification of mulberry juice. Browning of minimally processed mulberry juice was inhibited significantly by adding 200 ppm sodium hydrosulfite, and 0.1% L-ascorbic acid (L-AsA) and 0,1% citric acid (CA) also showed considerable browning inhibition. Combination of L-AsA and CA, which was moderately effective for browning inhibition of juice, may be useful as a sulfite alternative for mulberry juice. Optimum sugar ($^{\circ}Brix$)/acid ratio and commercial sterilization of minimally processed mulberry juice were approximately 40 and 10 min at $85-90^{\circ}C$, respectively.

Micellar Enhanced Ceramic Microfiltration for Removal of Aqueous Ferrous Ion: Effect of Surfactant Concentration and $N_2$-back-flushing (용존 철(II) 제거를 위한 미셀형성 세라믹 정밀여과: 계면활성제 농도 및 질소 역세척의 영향)

  • Park, Jin-Yong;Kang, Sung-Gyu
    • Membrane Journal
    • /
    • v.19 no.2
    • /
    • pp.136-144
    • /
    • 2009
  • In this study, sodium dedocyl sulfate (SDS), which was anionic surfactant, was added for forming micelles to remove ferrous ions that could be contained with a small amount in industrial water. Then aggregates were formed by adsorption or binding of ferrous ions on the surface of micelles, and then rejected by ceramic membranes to remove ferrous ions. Ferrous concentration was fixed at 1mM and SDS was changed as $0{\sim}10mM$ to investigate the effect of the anionic surfactant. As a result, rejection rate of ferrous was the highest to 88.97% at 6mM. And we used ELS (Electrophoretic Light Scattering Spectrometer) to investigate particle size distribution of micellar aggregates depending on SDS concentration. Then distribution of large aggregates was the highest at 6mM. And we investigated effects of $N_2$-back-flushing time (BT) during periodic $N_2$-back-flushing on ceramic membranes. Finally optimal $N_2$-BT for NCMT-723l (pore size $0.10{\mu}m$) membrane was 20 sec.

Study on Removal of Cesium in Water Treatment System (물속의 방사성핵종(세슘) 제거율 연구)

  • Jeong, Gwanjo;Son, Boyoung;Ahn, Chihwa;Lee, Suwon;Ahn, Jaechan;Kim, Bogsoon;Chung, Deukmo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • This study investigated the removal of a radioactive cesium ($Cs^+$) in the water at the water treatment processes. Since cesium is mostly present as the $Cs^+$ ion state in water, it is not removed by sand filtration, and coagulation with polyaluminum chloride (PACl), powdered activated carbon (PAC) and mixture of PACl and PAC. However, it is known that the removal rate of cesium increases as the turbidity increases in raw water. As the turbidity was adjusted by 74 NTU and 103 NTU using the surrounding solids near G-water intake and yellow soils, removal rate of cesium was about 56% and 51%, respectively. In case of a GAC filtration with supernatants after jar-mixing/setting was conducted, 80% of cesium is approximately eliminated. The experimental results show that it is efficient to get rid of cesium when the turbidity of the raw water is more than 80 NTU. In case of a GAC filtration, about 60% of cesium is removed and it is considered by the effect of adsorption. Cesium is not eliminated by microfiltration membrane while about 75% of cesium is removed by reverse osmosis.

Studies on Carrier-Free Promethium-147 (무담체(無擔體) Pm-147에 관한 연구(硏究))

  • Jae, Won-Mok
    • Journal of Radiation Protection and Research
    • /
    • v.1 no.1
    • /
    • pp.15-21
    • /
    • 1976
  • The present investigation was intended to study the state of Pm-147 in solution and its adsorbed state on membrane filters by varying the concentrations of Pm-147 solution and its pH. Also, the study on the coprecipitation of Pm-147 with $Fe(OH)_3$ was carried out by varying, amounts of $Fe(OH)_3$ and pH of the solution. The carrier-free Pm-147 exists in an ionic state of $Pm^{3+}$ in solution, and is adsorbed on membrane filter in filtration process. The adsorbed state of Pm-147 on the membrane filter shows various ionic state at a constant ionic strength of 0.1M NaCl, that is, $Pm^{3+}$ state exists until pH value of 5.0, then gradually $Pm(OH)^{2+}$ state appears between pH value of 5.0 to 6.0, and the state of $Pm(OH)_2^+$ and $Pm(OH)_3$ would be expected at the higher pH value of 6.0. Coprecipitation of Pm-147 on $Fe(OH)_3$ is an adsorption penomenon in an ionic state of $Pm^{3+}$ in acidic condition. At higher pH and larger amount of Fe carrier, the adsorbed state of Pm-147 shows $Pm(OH)^{2+}$ and $Pm(OH)_2^+$ state. As a results of the present studies, it is seen that the characteristic of carrier free radioisotopes is not due to the radioactivity, but due to the adsorption of ultramicroquantity of radioisopes. Therefore, the knowledge on the ultramicroquantity of radioisotopes could help for the solution of decontamination in handing and chemical procedure with radioisotopes.

  • PDF

Fouling Mitigation for Pressurized Membrane of Side-Stream MBR Process at Abnormal Operation Condition (가압식 분리막을 이용한 Side-Stream MBR 공정의 비정상 운전조건에서 막 오염 저감)

  • Ko, Byeong-Gon;Na, Ji-Hun;Nam, Duck-Hyun;Kang, Ki-Hoon;Lee, Chae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.323-328
    • /
    • 2016
  • Pressurized membrane used for side-stream MBR process requires fouling control strategy both for normal and abnormal operation conditions for stable operation of the facilities. In this study, $85m^3/day$ of pilot-scale side-stream MBR process was constructed for the evaluation of fouling mitigation by air bubble injection into the membrane module. In addition, fouling phenomena at abnormal operation conditions of low influent and/or loading rate were also investigated. Injection of air bubble was found to be effective in delaying transmembrane pressure (TMP) increase mainly due to scouring effect on the membrane surface, resulting in expanded filtration cycle at a high flux of $40L/m^2{\cdot}h$ (LMH). At abnormal operation condition, injection of PACl (53 mg/L as Al) into the bioreactor showed 19% reduction of TMP increase. However, inhibition of nitrifying bacteria by continuous PACl injection was observed from batch experiments. In contrast, injection of powdered activated carbon (PAC, 0.6 g/L) was able to maintain the initial TMP of $0.2kg/cm^2$ for 5 days at the abnormal conditions. It may have been caused from the adsorption of extracellular polymeric substances (EPS), which was known to be excessively released during growth inhibition condition and act as the major foulants in MBR operations.