• Title/Summary/Keyword: adsorption layer

Search Result 403, Processing Time 0.028 seconds

Analytical polarization curve of DMFC anode

  • Kulikovsky, A.A.
    • Advances in Energy Research
    • /
    • v.1 no.1
    • /
    • pp.35-52
    • /
    • 2013
  • A model for DMFC anode performance is developed. The model takes into account potential--independent methanol adsorption on the catalyst surface, finite rate of proton transport through the anode catalyst layer (ACL), and a potential loss due to methanol transport in the anode backing layer. An approximate analytical half--cell polarization curve is derived and equations for the anode limiting current density are obtained. The polarization curve is fitted to the curves measured by Nordlund and Lindbergh and parameters resulted from the fitting are discussed.

Epitaxial Growth of BSCCO Thin Films Fabricated by Son Beam Sputtering

  • Park, Yong-Pil;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.484-488
    • /
    • 1997
  • BSCCO thin film is fabricated cia both processes of co-deposition and layer-by-layer deposition at an ultralow growth rate using ion beam sputtering method. The adsorption of Bi atom and the appearance of Bi-2212 phase shows large differance between both processes. It is found that the resident time of Bi vapor species on the surface of the substrate strongly dominates the film composition and the formation of the structure.

  • PDF

Henry성s law behavior on multilayer adsorption considered layer location dependence of the bonding energy (결합에너지의 층별 의존성이 고려된 다층흡착에서의 헨리법칙 거동)

  • 김철호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.106-110
    • /
    • 1998
  • 본 논문에서는 먼저 다층흡착에서 각 흡착층의 결합에너지가 서로 다른 경우의 흡착 등온선을 유도한다. 그리고 유도된 흡착등온식이 저압영역에서 헨리의 실험법칙을 잘 만족시킴을 보인다.

  • PDF

Breakthrough Curves and Miscible Displacement of Cadmium Through Double-Layered Reclaimed Soils Amended with Macroporous Granule

  • Kim, Hye-Jin;Ryu, Jin-Hee;Kim, Si-Ju;Park, Mi-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • Transport of heavy metals such as Cd is affected by several rate-limiting processes including adsorption and desorption by exchange reactions in soils. In this study, column transport and batch kinetic experiments were performed to assess Cd mobility in a double-layered soil with a reclaimed saline and sodic soil (SSS) as top soil and macroporous granule (MPG) as a bottom layer. For individual soil layer having different physical and chemical properties, Cd was considered to be nonlinear reactivity with the soil matrix in layered soils. The dispersive equation for reactive solutes was solved with three types of boundary conditions for the interface between soil layers. The adsorption of Cd with respect to the saline-sodic sandy loam and the MPG indicated that the nature of the sites or the mechanisms involved in the sorption process of Cd was different and the amounts of Cd for both of samples increases with increasing amounts of equilibrium concentration whereas the amount of Cd adsorbed in saline-sodic sandy loam soil was higher than that in MPG. The results of breakthrough curve indicating relative Cd retardation accompanied by layer material and sequence during leaching showed that the number of pore volumes to reach the maximum relative concentration of 1 increased in the order of MPG, SSS, and double layer of SSS-MPG. Breakthrough curves (BTCs) from column experiments were well predicted with our double-layered model where independently derived solute physical and retention parameters were implemented.

The Adsorption of Alkyl Aldehydes on Cations Supported by Layer Silicate. Complex Formation Theory (Layer Silicate에 지지된 양이온상에서의 알킬알데히드의 흡착기구. 착물형성 이론)

  • Kim Jong Taik;Sohn Jong Rack
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.180-188
    • /
    • 1974
  • Adsorption mechanism of alkyl aldehydes, acetaldehyde, acrolein, and crotonaldehyde on cations supported by layer silicates was studied by means of IR spectroscopy and X-ray. An analysis of four characteristic split bands in the region of $1720∼1580㎝^{-1}$ was made. The carbonyl stretching band which shifted about $130㎝^{-1}$ to lower frequencies was observed only for $Ni^{2+}$ and Al^{3+}$ but slightly with $Ca^{2+}$ at high sample temperature and was attributed to >C=O…M complex formation. A sharp band which appeared as a shoulder at 1722 for acetaldehyde and 1690 for acrolein and crotonaldehyde was responsible for the interaction of carbonyl with surface hydroxyl. The second broad band which appeared at about 1710~1660 was responsible for hydrogen bonding between carbonyl oxygen and cationic hydroxyl group. The third band which appeared at about 1640~1660 was attributed to induced >C=C< double bond due to the strong carbonyl interaction. This was supported by the interlamellar spacings obtained by X-ray diffractometry.

  • PDF

Removal Characteristics of Geosmin and MIB in BAC Process : Biodegradation and Adsorption (생물활성탄 공정에서 Geosmin과 MIB의 제거 특성 : 생물분해와 흡착)

  • Son, Hee-Jong;Lee, Jeong-Kyu;Kim, Sang-Goo;Park, Hong-Ki;Jung, Eun-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.6
    • /
    • pp.318-324
    • /
    • 2017
  • We evaluated geosmin and MIB biodegradation and adsorption mechanism of biological activated carbon (BAC) and anthracite biofilter. In steady state of BAC process, the geosmin and MIB were completely removed at the 30 min empty bed contact time (EBCT) even though low water temperature ($9^{\circ}C$) in which the activity of attached bacteria decreased. When the water temperature was $26^{\circ}C$, the microbial biomass and activity were higher at the upper layer of the biofilm than at $9^{\circ}C$, and the microbial biomass and activity decreased as the depth was deeper. This is because when the water temperature is high, the biodegradable organic matter (BOM) removal rate in the upper layer is high and the BOM amount that can't be supplied to the lower layer. The Removal rate of geosmin and MIB by BAC process did not show a significant difference compare to activity-inhibited BAC by treated with azide and the biofilter also removed the geosmin and MIB by biological action. It means geosmin and MIB could be removed by competitive relationship between adsorption and biodegradation.

Sensing Properties of Porous Silicon Layer for Organic Vapors (다공질 실리콘의 유기가스 검지 특성)

  • 김성진;이상훈;최복길
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.963-968
    • /
    • 2002
  • In this work, porous silicon (PS) layer is investigated as a sensing material to detect organic vapors such as ethanol (called alcohol), methanol, and acetone in low concentrations. To do this, PS sensors were fabricated. They have a membrane structure and comb-type electrodes were used to detect the change of electrical resistance effectively. PS layer on Si substrates was formed by anodization in HF solution of 25%. From fabricated sensors, current-voltage (Ⅰ-Ⅴ) curves were measured for gases evaporated from 0.1 to 0.5% organic solution concentrations at 36$\^{C}$. As the result, all curves showed rectifying behavior due to a diode structure between Si and the PS layer. The conductance of most sensors increased largely at high voltage of 5V, but the built-in potential on the measured Ⅰ-Ⅴ curve was lowered inversely by the adsorption effect of the organic vapors with high dipole moment.

Humidity-Sensitive Properties of Self-Assembled Polyelectrolyte System

  • Lee Chil-Won;Kim Jong-Gyu;Gong Myoung-Seon
    • Macromolecular Research
    • /
    • v.13 no.3
    • /
    • pp.265-272
    • /
    • 2005
  • Polyelectrolyte membranes for humidity-sensing were fabricated using a layer-by-layer adsorption process based on the spontaneous self-assembly of alternating layers of cationic and anionic polymers on a silanized ITO patterned glass substrate. The substrate is dipped successively into dilute solutions of a polyanion and a polycation. The homopolymers and copoymers of diallyldimethylammonium chloride (DDA), allylamine hydrochloride (AA), 2-[(methacryloyloxy)ethyl]trimethyl ammonium chloride (METAC) and vinylbenzyl tributyl phosphonium chloride(VTBPC) were used as the polycations. In this experiment, it was found that the resistance varied according to the chemical structure of the polycation. The resistance varied from $10^7$ to $10^5$ $\Omega$, as the humidity was increased from 60 (relative humidity) to $95\%$RH, which is the range of RH values required for a dew sensor operating at high humidity.

Atomic Layer Etching of Silicon Using a Ar Neutral Beam of Low Energy (저에너지의 Ar 중성빔을 이용한 Silicon의 Atomic Layer Etching)

  • Oh, Chang-Kwon;Park, Sang-Duk;Yeom, Geun-Young
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.213-217
    • /
    • 2006
  • In this study, atomic layer etching of Si has been carried out using $Cl_2$ adsorption followed by the irradiation Ar neutral beam of low energy. In this experiment, the etch rate of Si was dependent on the $Cl_2$ pressure(the surface coverage of chlorine) and the irradiation time of Ar neutral beam(the flux density of Ar neural beam). And the etch rate of Si(100) and Si(111) were saturated exactly at one monolayer per cycle with $1.36{\AA}/cycle\;and\;1.57{\AA}/cycle$, respectively.

Layer-by-layer Control of MoS2 Thickness by ALET

  • Kim, Gi-Hyeon;Kim, Gi-Seok;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.234.1-234.1
    • /
    • 2015
  • Molybdenum disulfide (MoS2)는 van der Waals 결합을 통한 층상구조의 물질로써 뛰어난 물리화학적, 기계적 특성으로 Field Effect Transistors (FETs), Photoluminescence, Photo Detectors, Light Emitters 등의 많은 분야에서 연구가 보고 되어지고 있는 차세대 2D-materials이다. 이처럼 MoS2 가 다양한 범위에 응용될 수 있는 이유는 layer 수가 증가함에 따라 1.8 eV의 direct band gap 에서 1.2 eV 의 indirect band-gap으로 특성이 변화할 뿐만 아니라 다양한 고유의 전기적 특성을 지니고 있기 때문이다. 그러나 MoS2 는 원자층 단위의 layer control 이 어렵다는 이유로 다양한 전자소자 응용에 많은 제약이 보고 되어졌다. 본 연구에서는 MoS2 의 layer를 control 하기 위해 ICP system 에서 mesh grid 를 삽입하여 Cl2 radical을 효과적으로 adsorption 시킨 뒤, Ion beam system 에서 Ar+ Ion beam 을 통해 한 층씩 제거하는 방식의 atomic layer etching (ALE) 공정을 진행하였다. ALE 공정시 ion bombardment 에 의한 damage 를 최소화하기 위해 Quadruple Mass Spectrometer (QMS) 를 통한 에너지 분석으로 beam energy 를 20 eV에서 최적화 할 수 있었고, Raman Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy(AFM) 분석을 통해 ALE 공정에 따른 MoS2 layer control 가능 여부를 증명할 수 있었다.

  • PDF