• Title/Summary/Keyword: adsorption application

Search Result 455, Processing Time 0.027 seconds

Electrosorption of U(VI) by Surface-Modified Activated Carbon Fiber (표면처리 활성탄소섬유에 의한 U(VI)의 전기흡착)

  • Lee, Yu Ri;Jung, Chong Hun;Ryu, Seung Kon;Oh, Won Zin
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.60-65
    • /
    • 2005
  • The electrosorption of U(VI) from waste water was carried out by using activated carbon fiber(ACF) felt electrode in a continuous electrosorption cell. In order to enhance the electrosorption capacity at lower potential, ACF felt was chemically modified in acidic, basic and neutral solution. Pore structure and functional groups of chemically modified ACF were examined, and the effect of treatment conditions was studied for the adsorption of U(VI). Specific surface area of all ACFs decreases by this treatment. The amount of acidic functional groups decreases with basic and neutral salt treatment, while the amount increases a lot with acidic treatment. The electrosorption capacity of U(VI) decreases on using the acid treated electrode due to the shielding effect of acidic functional groups. Base treated electrode enhances the capacity due to the reduction of acidic functional groups. The electrosorption amount of U(VI) on the base treated electrode at -0.3 V corresponds to that of ACF electrode at -0.9 V. Such a good adsorption capacity was not only due to the reduction of shielding effect but also the increase of $OH^-$ in the electric double layer on ACF surface by the application of negative potential.

Preparation of PVdF Composite Nanofiber Membrane by Using Manganese-Iron Oxide and Characterization of its Arsenic Removal (망간-철 산화물을 이용한 PVdF 나노섬유복합막의 제조 및 비소 제거 특성 평가)

  • Yun, Jaehan;Jang, Wongi;Park, Yeji;Lee, Junghun;Byun, Hongsik
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.116-125
    • /
    • 2016
  • This study described a synthesis of MF having a arsenic removal characteristics and the fundamental research was performed about the simultaneous removal system of both As(III) and As(V) ions with the composite nanofiber membrane (PMF) based on PVdF and MF materials for the water-treatment application. From the TEM analysis, the shape and structure of MF materials was investigated. The mechanical strength, pore-size, contact angle and water-flux analysis for the PMF was performed to investigate the possibility of utilizing as a water treatment membrane. From these results, the PMF11 showed the highest value of mechanical strength ($232.7kgf/cm^2$) and the pore-diameter of composite membrane was reduced by introducing the MF materials. In particular, their pore diameter decreased with an increase of iron oxide composition ratio. The water flux value of PMF was improved about 10 to 60% compared with that of neat PVdF nanofiber membranes. From the arsenic removal characterization of prepared MF materials and PMF, it was shown the simultaneous removal characteristics of both As(III) and (V) ions, and the MF01, in particular, showed the highest adsorption-removal rate of 93% As(III) and 68% As(V), respectively. From these results, prepared MF materials and PMF have shown a great potential to be utilized for the fundamental study to improve the functionality of water treatment membrane.

Food Functionalities of Dried Fish Protein Powder (건조 어육 단백질 분말의 식품학적 기능성)

  • Choi, Gyeong-Lim;Hong, Yu-Mi;Lee, Keun-Woo;Choi, Young-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1394-1398
    • /
    • 2006
  • Functionalities of drum-dried fish muscle protein from pH shifting process have been investigated by determining solubility, emulsion activity, rehydration, fat-adsorption capacity, viscosity, and color. Solubility was higher in recovered protein at pH 7.0 than that at pH 5.5, and not dependent on ionic strength. Solubility of the dried protein recovered at pH 7.0 depended on pH of solvent, and lowest in the range of pH 3 to pH 6. The dried protein showed relatively low emulsion capacity in all the samples. Emulsion stability, foam capacity and foam stability were not observed in the samples. Viscosity was in the range of $50,200\sim39,000cP$. Rehydration and fat-binding capacities were $2.63\sim2.89g$-water/g and $2.13\sim2.17g$-oil/g, respectively, and not dependent on particle size and pH. Drum-dried fish muscle protein has a potential application as an ingredient of meat patty products.

Application of Ferrate(VI) on the Decomplexation of Cu(II)-EDTA

  • Tiwari, Diwakar;Yang, Jae-Kyu;Chang, Yoon-Young;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.131-135
    • /
    • 2008
  • In this study, Fe(VI) was employed as a multi-functional agent to treat the simulated industrial wastewater contaminated with Cu(II)-EDTA through oxidation of EDTA, decomplexation of Cu(II)-EDTA and subsequent removal of free copper through precipitation. The decomplexation of $10^{-4}\;M$ Cu(II)-EDTA species was performed as a function of pH at excess concentration of Fe(VI). It was noted that the acidic conditions favor the decomplexation of Cu(II)-EDTA as the decomplxation was almost 100% up to pH 6.5, while it was only 35% at pH 9.9. The enhanced degradation of Cu(II)-EDTA with decreasing the pH could be explained by the different speciation of Fe(VI). $HFeO_4^-$ and $H_2FeO_4$, which are relatively more reactive than the unprotonated species $FeO_4^{2-}$, are predominant species below neutral pH. It was noted that the decomplexation reaction is extremely fast and within 5 to10 min of contact, 100% of Cu(II)-EDTA was decomplexed at pH 4.0. However, at higher pH (i.e., pH 10.0) the decomplexation process was relatively slow and it was observed that even after 180 min of contact, maximum ca 37% of Cu(II)-EDTA was decomplexed. In order to discuss the kinetics of the decomplexation of Cu(II)-EDTA, the data was slightly fitted better for the second order rate reaction than the first order rate reaction in the excess of Fe(VI) concentration. On the other hand, the removal efficiency of free Cu(II) ions was also obtained at pH 4.0 and 10.0. It was probably removed through adsorption/coagulation with the reduced iron i.e., Fe(III). The removal of total Cu(II) was rapid at pH 4.0 whereas, it was slow at pH 10.0. Although the decomplexation was 100% at lower pH, the removal of free Cu(II) was relatively slow. This result may be explicable due to the reason that at lower pH values the adsorption/coagulation capacity of Fe(III) is greatly retarded. On the other hand, at higher pH values the decomplexation of Cu(II)-EDTA was partial, hence, slower Cu(II) removal was occurred.

$TiO_2$-Encapsulated EFAL-Removed Zeolite Y as a New Photocatalyst for Photodegradation of Azo Dyes in Aqueous Solution

  • ChO, Won-Je;Sook-Ja Yoon,;Yoon, Min-Joong
    • Journal of Photoscience
    • /
    • v.12 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • Application of a new photocatalyst has been attempted to improve the efficiency and rates of photocatalytic degradation of azo dyes by using a model dye such as Methyl Orange. As a new photocatalyst, $TiO_2$ encapsulated EFAL-removed zeolite Y ($TiO_2$ /EFAL-removed zeolite Y) has been synthesized by ion-exchange in the mixture of EFAL-removed zeolite Y with 0.05 M aqueous [$(NH_4)_2 TiO(C_2O_4)_2.H_2O$] [$TiO(C_2O_4)_2.H_2O$]. This new photocatalyst has been characterized by measuring XRD, IR and reflectance absorption spectra as well as ICP analysis, and it was found that the framework structure of $TiO_2$ /EFAL-removed zeolite Y is not changed by removing the extra-framework aluminum (EFAL) from the normal zeolite Y and the $TiO_2$ inside the photocatalyst exists in the form of $(TiO^{2+})_n$ nanoclusters. Based on the ICP analysis, the Si/Al ratio of the $TiO_2$ /EFAL-removed zeolite Y and the weight of $TiO_2$ were determined to be 23 and 0.061g in 1.0g photocatalyst, respectively. It was also found that adsorption of the azo dye in the $TiO_2$ /EFAL-removed zeolite is very effective (about 80 % of the substrate used). This efficient adsorption contributes to the synergistic photocatalytic activities of the $TiO_2$ /EFAL-removed zeolite by minimizing the required flux diffusion of the substrate. Thus, the photocatalytic reduction of methyl orange (MO) was found to be 8 times more effective in the presence of $TiO_2$ /EFAL-removed zeolite Y than in the presence of $TiO_2$ /normal zeolite Y. Furthermore, the photocatalytic reduction of MO by using 1.0 g of the $TiO_2$ /EFAL-removed zeolite Y containing 0.061g of $TiO_2$ is much faster than that carried out by using 1.0 g of Degussa P-25.

  • PDF

Optimization for Decolorization and UV-Absorbility of Refined Sea Buckthorn Oil Using CCD-RSM (CCD-RSM을 이용한 시벅턴 오일의 탈색공정 최적화 및 자외선 흡수능력 평가)

  • Hong, Seheum;Zheng, Yunfei;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.61-67
    • /
    • 2021
  • In this study, the adsorption decolorization process of sea buckthorn oil was carried out to verify the possibility of the sea buckthorn oil as a natural UV absorber. The optimization was carried out by using the central composite design model-response surface methodology (CCD-RSM). The response values of CCD-RSM were selected as the decolorization effect through the process, acid value after decolorization, and UV absorbance of the decolored oil at 290nm. The amount of adsorbent, temperature and time were selected as the process variables for the experiments. According to the results of CCD-RSM, the results of optimization were all consistent. The optimal conditions, which satisfy CCD-RSM statically and mathematically, were 4.32 wt.%, 134.90 ℃, and 19.8 min for the amount of adsorbent, temperature and time, respectively. The estimated response values expected under these optimal conditions values were 94.78%, 2.08 mg/g KOH, and 2.91 for the decolorization effect, acid value and UV absorbance at 290 nm, respectively. Also the average error from actual experiment for verifying the conclusions was smaller than 2%. Therefore, it was confirmed that the application of CCD-RSM to the adsorption decolorization process of sea buckthorn oil showed a very high level of acceptable results and that the sea buckthorn oil has high possibility to be used as a natural UV absorber.

Fabrication of Copper(II) Oxide Plated Carbon Sponge for Free-standing Resistive Type Gas Sensor and Its Application to Nitric Oxide Detection (프리스탠딩 저항형 가스 센서용 산화구리 무전해 도금 탄소스펀지 제조 및 일산화질소 감지)

  • Kim, Seokjin;Ha, Seongmin;Myeong, Seongjae;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.6
    • /
    • pp.630-635
    • /
    • 2022
  • Copper(II) oxide (CuO), electroless plated on a nitrogen-containing carbon sponge prepared by a melamine sponge thermal treatment, was developed as a nitric oxide (NO) gas sensor that operates without a wafer. The CuO content on the surface of the carbon sponge increased as the plating time increased, but the content of nitrogen known to induce NO gas adsorption decreased. The untreated carbon sponge showed a maximum resistance change (5.0%) at 18 min. On the other hand, the CuO plated sample (CuO30s-CS) showed a maximum resistance change of 18.3% in 8 min. It is considered that the improvement of the NO gas sensing capability was caused by the increase in hole carriers of the carbon sponge and improved movement of electrons due to CuO. However, the NO gas detection resistance of the CuO electroless plated carbon sponge for 60 s decreased to 1.9%. It is considered that the surface of the carbon sponge was completely plated with CuO, resulting in a decrease in the NO gas adsorption capacity and resistance change. Thus, CuO-plated carbon sponge can be used as an effective NO gas sensor because it has fast and excellent resistance change properties, but CuO should not be completely plated on the surface of the carbon sponge.

A Study on the Solution of Product Particle Attachment Problem using Practical TRIZ (실용 트리즈를 활용한 제품 Particle 부착 문제의 해결 방안 연구)

  • Kyu-Han Jeong;In-Kwang Song;Jang-Hee Lee
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.209-221
    • /
    • 2023
  • In the external inspection and packaging stages of products used in the semiconductor manufacturing process, there is a problem in which particles are adsorbed to the product itself or a carrying tool due to electrostatic discharge. This study presents a methodology that can improve the problem of adsorption of particles to a product by using a practical TRIZ technique. By applying the proposed practical TRIZ-based methodology, the problem was defined, and contradictions caused by product waiting time were derived. Among the derived contradictions, physical contradictions were set and the concept of 'space separation' was applied to derive solutions such as 'installation of Ionizer' and 'improvement of the layout of the workroom'. As a result of the experiment by applying 'Ionizer Installation' and 'Workroom Layout Improvement' derived through the application of practical TRIZ, it was confirmed that the particle adsorption problem that occurs during the waiting time of the product can be solved.Through this study, it is expected that workers, facility engineers, and technical engineers working at manufacturing processes will be able to effectively solve the problems they face through creative thinking and change of ideas by using practical TRIZ techniques, and contribute to innovative technology development and productivity improvement.

Effects on Water Quality and Rice Growth to Irrigation of Discharge Water from Municipal Waste Treatment Plant in Rice Paddy during Drought Periods (한발기 벼 재배시 하수종말처리장 방류수 관개에 따른 논의 수질 및 벼 생육에 미치는 영향)

  • Shin, Joung-Du;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Kim, Jin-Ho;Yun, Sun-Gang;Choi, Chul-Mann
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.225-230
    • /
    • 2008
  • Objective of this study was to access the environmental impacts of the use of discharge water from municipal waste water treatment plant as alternative irrigation resources during drought season for rice cultivation. For the field experiments, it was observed that plant growth and yield characteristics at 20 days of alternative irrigation period with application of FAST (fertilizer application based on soil test) 50% were relatively the same as the control. For the surface water quality, it appeared that $EC_i$ (electrical conductivity of irrigation water) and SAR (sodium adsorption ratio) values of DMWT (discharge waters from municipal wastewater treatment plant) irrigation were twofold higher than those of ground water irrigation as the control regardless of fertilization levels. For the irrigation periods, there were not significantly difference between 10 and 20 days of treatments, but $EC_i$ and SAR values of surface water were highest at 30 days of irrigation periods at initial rice growing stages. Generally, $EC_i$ values of percolation water in all the treatments were gradually increasing until 30days after irrigation, and then decreasing to harvest stage. Overall, it might be considered that there was possibility to irrigate DMWT with application of FAST 50% for 20 days of drought periods at rice transplanting season. Furthermore, efficiency rate of alternative irrigation water for 20 days of drought period was 32.7% relative to the total annual irrigation water for rice cultivation.

Yield Response of Chinese Cabbage to Compost, Gypsum, and Phosphate Treatments under the Saline-sodic Soil Conditions of Reclaimed Tidal Land (퇴비, 석고, 인산으로 개량한 염류-나트륨성 간척지 토양에서 배추의 생육)

  • Lee, Jeong-Eun;Seo, Dong-Hyuk;Ro, Hee-Myong;Yun, Seok-In
    • Horticultural Science & Technology
    • /
    • v.34 no.4
    • /
    • pp.587-595
    • /
    • 2016
  • Salt stress in crops in reclaimed tidal lands can be reduced by applying soil amendments. To evaluate the effects of compost, gypsum, and phosphate on the growth of Chinese cabbage in saline-sodic soil conditions, we conducted a pot experiment in 2013 and 2014. The treatments consisted of a standard fertilizer application of a mix of compost and N-P-K fertilizer (S) and standard fertilizer applications with additional compost (S + C), gypsum (S + G), phosphate (S+P), and gypsum and phosphate (S + GP). The mean dry matter yield of cabbage in 2014 was three times as great as that in 2013, although soil EC (Electrical conductivity) in 2014 was not decreased. However, the mean ratio of sodium ion in soil solution ($SAR_{1:5}$) significantly decreased from $17.3{\pm}1.1$ in 2013 to $11.2{\pm}2.7$ in 2014. Application of gypsum had the greatest positive impact on the growth of Chinese cabbage. The S + G treatment increased dry matter yield by 7.0 (48.2) and 7.9 g/plant (16.6%) in 2013 and 2014, respectively, compared to the S treatment. Applying gypsum increased soil EC, but decreased $SAR_{1:5}$ by 14 and 38% in 2013 and 2014, respectively. The application of compost and phosphate had a small effect on the growth of Chinese cabbage. These results suggest that applying gypsum in reclaimed tidal lands can reduce the sodicity of the soil and improve crop growth.