• Title/Summary/Keyword: adsorption application

Search Result 455, Processing Time 0.028 seconds

Synthesis and Characterization of Magnetic Nanoparticles and Its Application in Lipase Immobilization

  • Xu, Jiakun;Ju, Caixia;Sheng, Jun;Wang, Fang;Zhang, Quan;Sun, Guolong;Sun, Mi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2408-2412
    • /
    • 2013
  • We demonstrate herein the synthesis and modification of magnetic nanoparticles and its use in the immobilization of the lipase. Magnetic $Fe_3O_4$ nanoparticles (MNPs) were prepared by simple co-precipitation method in aqueous medium and then subsequently modified with tetraethyl orthosilicate (TEOS) and 3-aminopropyl triethylenesilane (APTES). Silanization magnetic nanoparticles (SMNP) and amino magnetic nanomicrosphere (AMNP) were synthesized successfully. The morphology, structure, magnetic property and chemical composition of the synthetic MNP and its derivatives were characterized using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) analysis, X-ray diffraction, superconducting quantum interference device (SQUID) and thermogravimetric analyses (TGA). All of these three nanoparticles exhibited good crystallization performance, apparent superparamagnetism, and the saturation magnetization of MNP, SMNP, AMNP were 47.9 emu/g, 33.0 emu/g and 19.5 emu/g, respectively. The amino content was 5.66%. The AMNP was used to immobilize lipase, and the maximum adsorption capacity of the protein was 26.3 mg/g. The maximum maintained activity (88 percent) was achieved while the amount of immobilized lipase was 23.7 mg $g^{-1}$. Immobilization of enzyme on the magnetic nanoparticles can facilitate the isolation of reaction products from reaction mixture and thus lowers the cost of enzyme application.

Wet Foam Stability from Colloidal Suspension to Porous Ceramics: A Review

  • Kim, Ik Jin;Park, Jung Gyu;Han, Young Han;Kim, Suk Young;Shackelford, James F.
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.211-232
    • /
    • 2019
  • Porous ceramics are promising materials for a number of functional and structural applications that include thermal insulation, filters, bio-scaffolds for tissue engineering, and preforms for composite fabrication. These applications take advantage of the special characteristics of porous ceramics, such as low thermal mass, low thermal conductivity, high surface area, controlled permeability, and low density. In this review, we emphasize the direct foaming method, a simple and versatile approach that allows the fabrication of porous ceramics with tailored microstructure, along with distinctive properties. The wet foam stability is achieved under the controlled addition of amphiphiles to the colloidal suspension, which induce in situ hydrophobization, allowing the wet foam to resist coarsening and Ostwald ripening upon drying and sintering. Different components, like contact angle, adsorption free energy, air content, bubble size, and Laplace pressure, play vital roles in the stabilization of the particle stabilized wet foam to the porous ceramics. The mechanical behavior of the load-displacements curves of sintered samples was investigated using Herzian indentations testes. From the collected results, we found that microporous structures with pore sizes from 30 ㎛ to 570 ㎛ and the porosity within the range from 70% to 85%.

Development of Oil-water Separator for the Effective Application of Highly Selective Membranes (고선택성 유수분리막 적용성 향상을 위한 유수분리장치 성능 개선 연구)

  • Choi, Kwang-Soon;Lee, Donghun;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.39-42
    • /
    • 2019
  • We report on the design of oil-water separators and the selection of materials for the effective application of highly selective membranes fabricated by commercial PET (polyester) fabrics. The waterproof ability of PET fabrics was optimized to improve the separation selectivity. The density of individual PET fabrics should be over $60g/m^2$, and the multi-layered structure is more favorable for the waterproof ability together with maintaining the removal efficiency. For the continuous adsorption and removal process, the rotating perforated cylinder was selected, and covered with membranes. Furthermore, more improved and stable removal efficiency was obtained by installing floating baffles which forces the oil content to move toward membranes.

Patent Trend Analysis of Carbon Capture Storage Utilization (이산화탄소 포집·저장 기술 및 활용에 대한 디자인 고찰)

  • Yoon, June;Jin-Oh, Kim
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.6
    • /
    • pp.465-474
    • /
    • 2022
  • In order to achieve carbon neutrality, it is necessary to commercialize and popularize carbon dioxide capture technology, so the purpose of this study is to put forward the design of public facilities suitable for public environment. In the design direction of public facilities for carbon capture and environmental purification, the application of carbon capture technology in air, the application of carbon capture and adsorption materials, and carbon reduction recycling are selected for development. In order to achieve carbon neutrality, this study develops a new concept of public facility design which is different from the existing public facilities in public space. From this point of view, it has great enlightenment significance. Public facilities adopting carbon-neutral technology are environmentally friendly public facilities that conform to the times, and can be installed in parks, roads and other spaces. With the rest of citizens and the role of communities, it is expected to contribute to popularization and activation.

Electric Properties of Carbon Aerogel for Super Capacitors (카본 에어로겔을 이용한 초고용량 커패시터의 전기적 특성)

  • Han, Jeong-Woo;Lee, Kyeong-Min;Lee, Du-Hee;Lee, Sang-Won;Yoon, Jung-Rag
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.660-666
    • /
    • 2010
  • Carbon aerogels are promising materials as electrodes for electrical double layer capacitors (EDLCs). An optimum process is presented for synthesis of nanoporous carbon aerogels via pyrolyzing resorcinol-formaldehyde (RF) organic aerogels, which could be cost-effectively manufactured from RF wet gels. The major reactions between resorcinol and formaldehyde include an addition reaction to form hydroxymethyl derivatives ($-CH_2OH$), and then a condensation reaction of the hydroxymethyl derivatives ($-CH_2-$)- and methylene ether ($-CH_2OCH_2-$) bridged compounds. The textural properties of carbon aerogels obtained were characterized by nitrogen adsorption/desorption analysis and SEM and TEM. The application of the resultant carbon for electrodes of electric double layers capacitor (EDLC) in organic TEABF4/ACN electrolyte indicated that the ESR, as low as 55 $m{\Omega}$, was smaller than for commercially activated carbons. And EDLC with carbon Aerogel electrodes has an excellent stable more than for commercially activated carbons.

Effect of Carbonized Wastewoods on Soil Improvement (목질폐잔재 탄화물의 토양개량 효과)

  • 이동욱;김병로
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • In this study, it was examined the effect of carbonized wastewoods on soil improvement and effect of charcoal size on tree seedling growth Thuja accidentalis seedlings grow better in the charcoal-treated soil than in the non-treated soil. Especially Pinus koraiensis charcoal with good adsorption. brought the best growth result. The charcoal treatment also improved the height growth of transplanted Aesuculus turbinate seedling However charcoal sizes(i.e. powder and particle) did not affect the growth of the seedling. Also apple trees which had been suffering from rotten roots caused by root rot was recovered by application particle-sized charcoal.

  • PDF

Preparation, Characterization and First Application of Aerosil Silica Supported Acidic Ionic Liquid as a Reusable Heterogeneous Catalyst for the Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones

  • Yassaghi, Ghazaleh;Davoodnia, Abolghasem;Allameh, Sadegh;Zare-Bidaki, Atefeh;Tavakoli-Hoseini, Niloofar
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2724-2730
    • /
    • 2012
  • A new heterogeneous acidic catalyst was successfully prepared by impregnation of silica (Aerosil 300) by an acidic ionic liquid, named 1-(4-sulfonic acid)butylpyridinium hydrogen sulfate [$PYC_4SO_3H$][$HSO_4$], and characterized using FT-IR spectroscopy, the $N_2$ adsorption/desorption analysis (BET), thermal analysis (TG/DTG), and X-ray diffraction (XRD) techniques. The amount of loaded acidic ionic liquid on Aerosil 300 support was determined by acid-base titration. This new solid acidic supported heterogeneous catalyst exhibits excellent activity in the synthesis of 2-aryl-2,3-dihydroquinazolin-4(1H)-ones by cyclocondensation reaction of 2-aminobenzamide with aromatic aldehydes under solvent-free conditions and the desired products were obtained in very short reaction times with high yields. This catalyst has the advantages of an easy catalyst separation from the reaction medium and lower problems of corrosion. Recycling of the catalyst and avoidance of using harmful organic solvent are other advantages of this simple procedure.

Application of Ultra Rapid Coagulation for Securing Water Resource II: Study of CSO Treatment and Sludge Reuse (수자원 확보를 위한 URC공법의 적용 II: CSO의 처리와 슬러지 재활용에 관한 연구)

  • Park, Se Jin;Yoon, Tai Il;Cho, Kyung Chul;Kim, Chang Gyun
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.39-49
    • /
    • 2000
  • Ultra Rapid Coagulation (URC) can dramatically remove pollutants loaded in wastewater by adding weighted coagulation additives (WCA) and recycling sludge into the coagulation basin to increase settling velocity and surface adsorption ability of floc. Also settling chamber together with lamella plates offers the high rate settling velocity, which can economically treat a considerable amount of pollutants like as combined sewage overflow (CSO) during the heavy rainfall and reduce the pollutants load into the receiving water for securing water source. It was estimated optimal configuration of settling chamber by using fluent model and the possibilities of reusing the sludge generated in this system.

  • PDF

Application of Ultra Rapid Coagulation for Securing Water Resource II: Study of organic, metals, and nutrients removal (수자원 확보를 위한 URC공법의 적용 I: 유기물, 중금속, 영양염의 제거특성에 관한 연구)

  • Park, Se Jin;Yoon, Tai Il;Kim, Jae Hyung;Cho, Kyung Chul
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.27-38
    • /
    • 2000
  • A physicochemical process called Ultra Rapid Coagulation(URC) can dramatically remove organics, metals, and phosphates in wastewater by adding weighted coagulation additive(WCA) and recycling sludge into the coagulation basin to increase the growth rate and adsorption ability of floc. Also this process can improve floc settling rate than conventional coagulation process and reduce the pollutants loaded into the receiving water for securing water source. It was evaluated that WCA and sludge added have effects on the removal efficiency and estimated the possibilities of reusing the effluent from this process.

  • PDF

Heat Energy Diffusion Analysis in the Gas Sensor Body with the Variation of Drain-Source Electrode Distance (드레인-소스 전극 간극의 변화에 따른 Gas Sensor의 열에너지 확산 해석)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.589-595
    • /
    • 2017
  • MOS-FET structured gas sensors were manufactured using MWCNTs for application as NOx gas sensors. As the gas sensors need to be heated to facilitate desorption of the gas molecules, heat dispersion plays a key role in boosting the degree of uniformity of molecular desorption. We report the desorption of gas molecules from the sensor at $150^{\circ}C$ for different sensor electrode gaps (30, 60, and $90{\mu}m$). The COMSOL analysis program was used to verify the process of heat dispersion. For heat analysis, structure of FET gas sensor modeling was proceeded. In addition, a property value of the material was used for two-dimensional modeling. To ascertain the degree of heat dispersion by FEM, the governing equations were presented as partial differential equations. The heat analysis revealed that although a large electrode gap is advantageous for effective gas adsorption, consideration of the heat dispersion gradient indicated that the optimal electrode gap for the sensor is $60{\mu}m$.