DOI QR코드

DOI QR Code

Electric Properties of Carbon Aerogel for Super Capacitors

카본 에어로겔을 이용한 초고용량 커패시터의 전기적 특성

  • 한정우 (삼화콘덴서공업(주) 부설연구소) ;
  • 이경민 (삼화콘덴서공업(주) 부설연구소) ;
  • 이두희 (삼화콘덴서공업(주) 부설연구소) ;
  • 이상원 (삼화콘덴서공업(주) 부설연구소) ;
  • 윤중락 (삼화콘덴서공업(주) 부설연구소)
  • Received : 2010.06.18
  • Accepted : 2010.07.23
  • Published : 2010.08.01

Abstract

Carbon aerogels are promising materials as electrodes for electrical double layer capacitors (EDLCs). An optimum process is presented for synthesis of nanoporous carbon aerogels via pyrolyzing resorcinol-formaldehyde (RF) organic aerogels, which could be cost-effectively manufactured from RF wet gels. The major reactions between resorcinol and formaldehyde include an addition reaction to form hydroxymethyl derivatives ($-CH_2OH$), and then a condensation reaction of the hydroxymethyl derivatives ($-CH_2-$)- and methylene ether ($-CH_2OCH_2-$) bridged compounds. The textural properties of carbon aerogels obtained were characterized by nitrogen adsorption/desorption analysis and SEM and TEM. The application of the resultant carbon for electrodes of electric double layers capacitor (EDLC) in organic TEABF4/ACN electrolyte indicated that the ESR, as low as 55 $m{\Omega}$, was smaller than for commercially activated carbons. And EDLC with carbon Aerogel electrodes has an excellent stable more than for commercially activated carbons.

Keywords

References

  1. R. W. Pekala, J.Muter. Sci. 24, 3221 (1989). https://doi.org/10.1007/BF01139044
  2. R. W. Pekala, J. C. Farmer, and C. T. Alviso, J. Non-Cryst. Solids 225, 74 (1998). https://doi.org/10.1016/S0022-3093(98)00011-8
  3. H. Probstle, M. Wiener, and J. Fricke, J. Porous Muter. 10, 213 (2003). https://doi.org/10.1023/B:JOPO.0000011381.74052.77
  4. W. C. Li, H. Probstle, and J. Fricke, J. Non-Cryst. Solids, 325, 1 (2003). https://doi.org/10.1016/S0022-3093(03)00325-9
  5. H. Probstle, C. Schmitt, and J. Fricke, J. Power Sources, 105, 189 (2002). https://doi.org/10.1016/S0378-7753(01)00938-7
  6. Y. Kibi, T. Saito, and M. Kurata, J. Power Sources 60, 219 (1996). https://doi.org/10.1016/S0378-7753(96)80014-0
  7. C. Lin and K. A. Ritter, Carbon 35, 1271 (1997). https://doi.org/10.1016/S0008-6223(97)00069-9
  8. R. C. Cook, S. A. Letter, C. E. Overturf, S. M. Lambert, G. Wilemski, and D. Schroen-Carey, Final Report UCRL-LR-105821-97-1 (1997).
  9. T. Horikawa, J. Hayashi, and K. Muroyama, Carbon 42, 1625 (2004). https://doi.org/10.1016/j.carbon.2004.02.016
  10. S. W. Hwang, and S. H. Hyun, J. Non-Cryst. Solids 347, 238 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.07.075
  11. H. Shi, Electrochim. Acta 41, 1633 (1996). https://doi.org/10.1016/0013-4686(95)00416-5
  12. P. L. Taberna, P. Simon, and J. F. Fauvarque, J. Electrochem. Soc. 150, A292 (2003). https://doi.org/10.1149/1.1543948
  13. Y. Z. Wei, B. Fang, S. Iwasa, J. Power Sources 141, 386 (2005). https://doi.org/10.1016/j.jpowsour.2004.10.001