• Title/Summary/Keyword: adsorbents

Search Result 492, Processing Time 0.034 seconds

Computational Simulation of Hydrocarbon Adsorption in a Packed Column (탄화수소 흡착 컬럼의 전산모사 특성)

  • Yoo, Kyung-Seun;Lee, Su-Jung;Kim, Ji-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.10-16
    • /
    • 2020
  • Computational simulations of adsorption columns were carried out to investigate the removal characteristics of VOCs from a laundry shop. n-Decane was selected as the representative component among the VOCs emitted, and the activity of the adsorbents, such as activated carbon, was evaluated using commercial CFD code. The mathematical framework was composed of continuity and Navier-stokes equations, and the simulation was performed using the Matlab program. The adsorption isotherms of LDF, Freundlich, and Langmuir were evaluated, and the adsorption amount of the adsorption isotherms with the adsorption parameter was compared. The simulation was carried out using a particle porosity, dispersion coefficient, particle density, bed diameter, and bed length of 0.79, 42.4 ㎠/min, 485 g/L, 2.0 cm, and 2.5 cm, respectively. The effect of the gas velocity, dispersion coefficient, and voidage on the adsorption amount was compared in the Langmuir adsorption isotherm. The simulation was carried out in the velocity range of 50 to 200 cm/min, dispersion coefficient range of 100 to 400 ㎠/min, and particle porosity range of 0.66 to 0.79. The simulation results of activated carbon with benzene coincided with the Langmuir isotherm. Three types of adsorption isotherm were compared under similar conditions, and the simulation results showed the efficient adsorption condition for hydrocarbons.

Comparison of Heavy Metal Adsorption by Manganese Oxide-Coated Activated Carbon according to Manufacture Method (활성탄-망간 산화물 합성소재의 제조방법에 따른 중금속 흡착특성 비교)

  • Lee, Seul Ji;Lee, Myoung-Eun;Chung, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • The adsorption characteristics of Pb(II) and Cu(II) by the manganese oxide-coated activated carbon (MOAC) were investigated by series of batch experiments. MOAC was prepared by three types of manufacturing methods such as chemical precipitation method (CP), hydrothermal method (HT) and supercritical method (SC). Pseudo-second-order and Langmuir models adequately described kinetics and isotherm of Pb(II) and Cu(II) adsorption on the experimented adsorbents. These results indicated that heavy metal ions were chemically adsorbed onto uniform monolayered adsorption sites. The coating of manganese oxide enhanced the adsorption capacities of AC. And adsorption capacities of Pb(II) and Cu(II) were significantly affected by the manufacturing method of MOAC. The highest adsorption performance was obtained by using SC, followed by HT and CP, which is caused from high uniformity and amount of manganese oxide coated onto AC induced by high temperature and pressure. These results show that MOAC can be used as an effective adsorbent to remediate heavy metal contaminated environment.

Studies on the Immobilization of Lipase by Adsorption Method (흡착법에 의한 Lipase의 고정화)

  • Park, Jong-Hack;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.75-80
    • /
    • 1985
  • To utilize lipase obtained from Candida cylindracea for lipid hydrolysis, methods to immobilize lipase by adsorption and reaction characteristics of the immobilized lipase by adsorption were investigated. Among the tested adsorbents, silica gel was selected as a suitable adsorbent. The optimum condition for adsorption of lipase was when 47.5 units of lipase were adsorbed to 1.6g of silica gel at pH7.0 and $5^{\circ}C$ for 100 min. Optimum pH and temperature for activity of the immobilized lipase were at $37^{\circ}C$ and pH7.0, which were same as the soluble lipase. Optimum enzyme concentration of the immobilized lipase were 30g for milk fat and 80g for olive oil, whereas those of the soluble lipase were 800 units for milk fat and 1200 units for olive oil. The optimum substrate concentrations of the immobilized and soluble lipases were 20% lipid, regardless of lipid types. Rapid hydrolysis of milk fat was observed with the soluble lipase for the initial 4 hours and with the immobilized lipase for the initial 8 hours. The immobilized lipase produced same amount of capric acid as the soluble lipase, but more myristic acid and less butyric acid than the soluble lipase.

  • PDF

Membrane-based Direct Air Capture Technologies (분리막을 이용한 공기 중 이산화탄소 제거 기술)

  • Yoo, Seung Yeon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.173-180
    • /
    • 2020
  • As the demand for fossil fuels continues to increase worldwide, carbon dioxide (CO2) concentration in the air has increased over the centuries. The way to reduce CO2 emissions to the atmosphere, carbon capture and sequestration (CCS) technology have been developed that can be applied to power plants and factories, which are primary emission sources. According to the climate change mitigation policy, direct air capture (DAC) in air, referred to as "negative emission" technology, has a low CO2 concentration of 0.04%, so it is focused on adsorbent research, unlike conventional CCS technology. In the DAC field, chemical adsorbents using CO2 absorption, solid absorbents, amine-functionalized materials, and ion exchange resins have been studied. Since the absorbent-based technology requires a high-temperature heat treatment process according to the absorbent regeneration, the membrane-based CO2 capture system has a great potential Membrane-based system is also expected for indoor CO2 ventilation systems and immediate CO2 supply to smart farming systems. CO2 capture efficiency should be improved through efficient process design and material performance improvement.

Study of $CO_2$ Absorption Characteristics in Aqueous K_2CO_3$ Solution with Homopiperazine (K_2CO_3$/homopiperazine 수용액의 이산화탄소 흡수 특성 연구)

  • Kim, Young-Eun;Nam, Sung-Chan;Lee, Young-Taek;Yoon, Yeo-Il
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.284-290
    • /
    • 2010
  • In this study, as one of the carbon dioxide ($CO_2$) adsorbents the aqueous potassium carbonate ($K_2CO_3$)/promoter mixtures were investigated. Equilibrium partial pressure ($P_{CO_2}^*$) and pressure change were measured by using VLE (Vapor-liquid equilibrium) equipment in the mixture solution at 60 and $80^{\circ}C$, respectively. Absorption capacity was estimated in the semi-batch absorption apparatus at 40, 60 and $80^{\circ}C$. We proposed to use homopiperazine (homoPZ), cyclic diamine compound as a promoter of $K_2CO_3$ solution, to prevent crystalline formation and increase absorption capacity of aqueous $K_2CO_3$ solution. The absorption capacity of $K_2CO_3$/homoPZ was compared with MEA, $K_2CO_3$ and $K_2CO_3$/piperazine (PZ). Based on the results, we found that the mixture solution containing homoPZ had lower equilibrium partial pressure than that of $K_2CO_3$ solution and the absorption rate was approximately 0.375-times faster at $60^{\circ}C$, 0.343-times faster at $80^{\circ}C$ than that of aqueous $K_2CO_3$ solution without homoPZ. $K_2CO_3$/homoPZ solution showed excellent CO2 loading capacity compared with MEA solution at $60^{\circ}C$.

The Effect of Residual Water on the Adsorption Process of Carbon Tetrachloride by Activated Carbon Pellet (활성탄에 의한 사염화탄소 흡착공정에서 잔존수분의 영향)

  • Jeong, Sung Jun;Lee, Dae Lo;Kim, Tae Young;Kim, Jin Hwan;Kim, Seung Jai;Cho, Sung Young
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.694-702
    • /
    • 2002
  • Activated carbons have been used as adsorbents in various industrial application, such as solvent recovery, gas separation, deodorization, and catalysts. In this study, the effects of residual water on the activated carbon adsorbent surface on the adsorption capacity of $CCl_4$ were investigated. Adsorption behavior in a fixed bed was studied in terms of feed concentration, flow rate, breakthrough curve and adsorption capacity for $CCl_4$. Desorption characteristics of residual water on activated carbon were also studied. The water contents of the activated carbon were varied in the range of 0-20%(w/w) and all experiments were performed at 298.15 K. The adsorption equilibrium data $CCl_4$ on the activated carbon were well expressed by Langmuir isotherm. The adsorption capacity of $CCl_4$ decreased with increasing residual water content. Desorption of residual water in activated carbon decreased expotentially with $CCl_4$ adsorption. The obtained breakthrough curves using LDF(linear driving force) model represented our experimental data.

Synthesis of Nanoporous NiO-SiO2 Pillared Clays and Surface Modification of the Pillaring Species (나노다공성 NiO-SiO2 가교화 점토의 합성 및 가교물질의 표면개질 연구)

  • Yoon, Joo-Young;Shim, Kwang-Bo;Moon, Ji-Woong;Oh, You-Keun
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.81-85
    • /
    • 2004
  • Nanoporous materials with nanometer-sized pores, are of great interest in the various applications such as selective adsorbents, heterogeneous catalysts and catalyst supports because of their high porosity, surface area, and size selective adsorption properties. This study is aimed to prepare nanoporous catalytic materials on the basis of two-dimersional clay by pillaring of $SiO_2$ sol particles. $SiO_2$ Pillared Montmorillonite (Si-PILM) was prepared by ion exchanging the interlayer $Ni^{2+}$ ions of clay with $SiO_2$ nano-sized particles of which the surface was modified with nicked polyhydroxy cations sach as $Ni_4(OH)_4^{4+}$. Nano-sized $SiO_2$ particles were formed by the controlled hydrolysis of tetraethyl orthosilicate (TEOS). Upon pillaring of $Ni^+$-modified $SiO_2$ nano particles between the clay layers, the basal spacing was expanded largely to $45{\AA}$ and the extremely large specific surface area ($S_{BET}$) of $760m^2/g$ was obtained.

Spectrophotometric Determination of Traces of Phosphorus in Semiconductor-grade Trichlorosilane (반도체급 삼염화실란 중의 극미량 인의 분광광도법적 정량)

  • Dong Kwon Kim;Myoung Wan Han;Hee Young Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.255-260
    • /
    • 1992
  • A procedure for spectrophotometric determination of traces of phosphorus(P) in high-purity trichlorosilane(TCS) is proposed using an adsorptive separation. $PCl_3$, which is a dominant P impurity within TCS, is first oxidized by oxygen to a stable form as $POCl_3$. $AlCl_3$ is selected as an adsorbent which forms a thermally stable complex with $POCl_3$ in TCS and can be well dissolved in aqueous ethanol solution. The proposed adsorptive separation method is free from the formation of silica gel and gas bubbles during the colorimetric analysis of TCS. The method reveals that the P concentration in a semiconductor-grade TCS is 5.32 ${\mi}g/l$ within the standard deviation of ${\pm}$ 17%. On the other hand, the P concentration of the purified TCS which is separated from the $AlCl_3$${\cdot}$$POCl_3$ complex is reduced to be less than 0.15 ${\mi}g/l$, showing the efficient applicability of $AlCl_3$ to the wet chemical analysis. The proposed method is also tested to verify the effectiveness of other well-known adsorbents.

  • PDF

Selective Adsorption of Sulfur Compounds from Natural Gas Fuel Using Nanoporous Molecular Sieves (나노세공 분자체를 이용한 천연가스 연료로부터 황 화합물의 선택적 흡착)

  • Kim, Hoon-Sung;Chung, Jong-Kook;Lee, Seok-Hee;Cheon, Jae-Kee;Moon, Myung-Joon;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.64-71
    • /
    • 2007
  • The selection of a suitable adsorbent for removing organic sulfur compounds tetrahydrothiophene (THT) and t-butylmercaptan (TBM) from natural gas has been carried out. The saturation adsorption capacity for the sulfur compounds were determined by pulse adsorption method for a group of nanoporous materials, including Na-Y, Na-ZSM-5, Na,K-ET(A)S-10, Na-Mordenite, Na,K-Clinoptitolite, Ti/MCM-41, Ti/SBA-15 and amorphous titanosilicates. Among the materials tested, Na-Y and Na,K-ET(A)S-10 zeolites showed high adsorptive capacities for THT and TBM. The saturation capacity for THT on Na,K-ETS-10 was comparable with that on Na-Y zeolite, which is well known as an effective adsorbent. The capacity and adsorptivity for THT and TBM on Na,K-ETAS-10 were improved by an increase in crystallinity of Na,K-ETAS-10. An investigation of the competitive adsorption between THT and TBM from the breakthrough test using a simulated natural gas indicates that Na,K-ETS-10 selectively adsorbs THT. The breakthrough capacity for THT on Na,K-ETS-10 was 1.19 mmol/g. The results show that the high adsorption performance of Na.K-ETS-10 and Na,K-ETAS-10 is due to the highly exchanged cations in the zeolitic structure which exhibit the strong electrostatic interactions with organic sulfur compounds and their wide pore nature.

  • PDF

Cholesterol Removal from Milk Fat by Supercritical Carbon Dioxide Extraction in coupled with Adsorption (초임계 이산화탄소 추출 및 흡착에 의한 유지방중의 콜레스테롤 제거)

  • Lim, Sang-Bin;Jwa, Mi-Kyung;Kwak, Hae-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.574-580
    • /
    • 1998
  • The technical feasibility of removing cholesterol from milk fat by supercritical carbon dioxide $(SC-CO_2)$ extraction followed by adsorption on different adsorbents and of fractionating milk fat into different fatty acid composition at $40^{\circ}C/276$ bar was investigated. Cholesterol could be selectively removed from milk fat by adsorption on a typical commercial florisil with $SC-CO_2$ extraction. Lower weight ratio of milk fat feed to florisil showed higher reduction of cholesterol, but gave lower yield in the milk fat fractions. The effective capacity of florisil for removing cholesterol from milk fat was 2.0g/g, which is the ratio of the fat feed to the adsorbent for 89% cholesterol reduction with a fat yield of 57.5%. Fatty acid composition showed higher short-chain and lower unsaturated long-chain fatty acids in the extracted fractions. Milk fat fractionation method by supercritical fluid extraction in coupled with adsorption would appear suitable for removing undesirable ingredients such as cholesterol and for enriching short-chain fatty acids in the fractions.

  • PDF