• Title/Summary/Keyword: adsorbed water

Search Result 433, Processing Time 0.031 seconds

Adsorbed Water in Soil a Interpreted by Its Potentials Based on Gibbs Function (Gibbs 함수의 포텐샬로 해석한 토양 흡착수)

  • 오영택;신제성
    • Journal of the Mineralogical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.17-25
    • /
    • 1996
  • Usual experimental adsorption isotherms as a function of relative humidity were constructed from adsorbed water contents in soils, which were kept more than 2 days in vacuum desiccators with constant humidities controlled by sulfuric acids of various concentrations. From the experimental data, the adsorption surface areas were calculated on the basis of the existing adsorption theory, such as Langmuir, BET, and Aranovich. Based on the Gibbs function describing chemical potential of perfect gas, the relative humidities in the desiccators were transformed into their chemical potentials, which were assumed to be the same as the potentials of equilibratedly adsorbed water in soils. Moreover, the water potentials were again transformed into the equivalent capillary pressures, heads of capillary rise, and equivalent radius of capillary pores, on the basis of Laplace equation for surface tension pressure of spherical bubbles in water. Adsorption quantity distributions were calculated on the profile of chemical potentials of the adsorbed water, equivalent adsorption and/or capillary pressures, and equivalent capillary radius. The suggested theories were proved through its application for the prediction of temperature rise of sulfuric acid due to hydration heat. Adsorption heat calculated on the basis of the potential difference was dependant on various factors, such as surface area, equilibrium constants in Langumuir, BET, etc.

  • PDF

Adsorptive Separation of Freon by Microwave Irradiation (마이크로파를 이용한 프레온의 흡착분리)

  • 김윤갑;소림오
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.2
    • /
    • pp.133-142
    • /
    • 1998
  • Gas adsorption on adsorbents depends on temperatures and pressures. When these parameters are fixed, the adsorption capability and selectivity can not be changed. If the gas adsorption is controlled by another factor like electromagnetic field, the adsorption and desorption can be managed by much intentional way. The microwave has characteristics to excite particular components such as water without destroying it. In this study, microwave was irradiated to the adsorbent of an NaY zeolite which is almost transparent to microwave. As vapor of 1, 1, 2- trichloro-1, 2, 2-trifluoroethane (CFC-113) and water flowed simultaneously on the zeolite packed in a column at room temperature, only water was adsorbed. The . adsorbed water was removed from the zeolite and then replaced by CFC-113, since the microwave was irradiated. Greater the power of microwave was, more CFC-113 was adsorbed. The water adsorption took place again after a latent period by stopping the microwave irradiation.

  • PDF

Statistical Thermodynamical Properties and Adsorption Characteristics of Heavy Water (중수의 열역학적 성질과 흡착특성)

  • Chang-Hyun Jho;Hyungsuk Park;Seihun Chang
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.285-293
    • /
    • 1971
  • The statistical thermodynamical properties of heavy water are calculated according to the transient state theory of significant liquid structure. The calculated values are shown to be in good agreement with the observed ones. The grand canonical ensemble partition function for the adsorbed phase of heavy water on graphite surface is derived using the theory. The adsorption isotherm, the surface pressure, the molar entropy and the molar internal energy for the adsorbed phase and then the molar heat of adsorption are calculated according to the derived partition function. The thermodynamic properties of the adsorbed water are also calculated and the results are compared with those of heavy water and discussed in view of the experimentally observed phenomena.

  • PDF

A Fundamental Study for The Possibility of Charcoal as Green Infrastructure Materials

  • Choi, Jaehyuck;Shin, Soo-Jeong;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.691-699
    • /
    • 2015
  • To evaluate the possibility of charcoal as Green Infrastructure (GI) materials, data such as moisture content, amount of adsorbed water, and amount of evaporation were collected. Some data from previous study were referenced to find out if correlations exist between results in this study and previous study. Only porosity was directly related to moisture content. Two mechanical charcoal had better abilities than traditional charcoal in all three categories. Mechanical black charcoal chips produced by National Forestry Cooperative Federation (NFCFC) adsorbed 333.3% of water in thirty minutes, 297.5% in five minutes, and evaporated around 75% water in four days. This ability is much higher than other five charcoal. Even though results of test showed various degrees and NFCFC was the best as GI materials, data of charcoal were also within acceptable range based on generally accepted characteristics of GI materials.

Runoff Loading on Nutrients from a Paddy Field during Non-Cropping Season (비영농기간 단일필지 논으로부터 영양물질의 유출부하량)

  • 조재영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.63-70
    • /
    • 2000
  • The present study was carried out for 7-months (from October 1.1997 to April 30. 1998) at a rice cultivation area blocked from livestock farming, farmstead and industrial complex to investigate the runoff loading of nitrogen and phosphorus in a plot(5,000$m^2$) paddy field areas. The runoff loading of total-N, amminia-N nitrate-N and total-P were 12.96kg/ha, 5.42kg/ha, 1.52kg/ha and 1.41kg/ha , respectively. When the runoff loading of nutrients was compared by dissolved and adsorbed forms, about 66% of total-N by dissolved form and the rest 34% by adsorbed form were flowed into streams. But 56% of total-P by adsorbed form and the rest 44% by dissolved form were flowed into streams. The phosphrous compounds , which were flowed into streams by runoff sediments and then sedimented, keep exchanging with water at water body in undelivered condition. And it moves gradually into water layer. This process can cause eutrophication continually and repeatedly in water environment . So, a sound program is needed to reduce soil erosion from farmlands.

  • PDF

Model and Experimental Isotherms of Soluble Proteins at water sur faces (수용성 단백질의 계면상 등온곡선의 모델과 실험적 규명)

  • Cho, D.
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.328-330
    • /
    • 2003
  • A surface equation of state for globular proteins at air-water interface accounting for the molecular structure, segment-segment, segment-solvent, and electrostatic interactions was proposed and compared to C-14 isotope experiments. This lattice model comprised a simplifying assumption that all adsorbed segments are in the form of trains. The number of segment adsorbed per molecule in case of bovine serum albumin linearly depended on the surface concentration whereas the lysozyme segments adsorbed at the interface were independent of surface concentration. The segment-solvent(water) interaction for both of proteins were found to be unfavorable owing to the proteins unfolding. From comparison of model computation and experimental data, BSA unfolded more than lysozyne because of the larger surface area of contact.

  • PDF

Slippage on which interface in nanopore filtration?

  • Xiaoxu Huang;Wei Li;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • The flow in a nanopore of filtration membrane is often multiscale and consists of both the adsorbed layer flow and the intermediate continuum fluid flow. There is a controversy on which interface the slippage should occur in the nanopore filtration: On the adsorbed layer-pore wall interface or on the adsorbed layer-continuum fluid interface? What is the difference between these two slippage effects? We address these subjects in the present study by using the multiscale flow equations incorporating the slippage on different interfaces. Based on the limiting shear strength model for the slippage, it was found from the calculation results that for the hydrophobic pore wall the slippage surely occurs on the adsorbed layer-pore wall interface, however for the hydrophilic pore wall, the slippage can occur on either of the two interfaces, dependent on the competition between the interfacial shear strength on the adsorbed layer-pore wall interface and that on the adsorbed layer-continuum fluid interface. Since the slippage on the adsorbed layer-pore wall interface can be designed while that on the adsorbed layer-continuum fluid interface can not, the former slippage can result in the flux through the nanopore much higher than the latter slippage by designing a highly hydrophobic pore wall surface. The obtained results are of significant interest to the design and application of the interfacial slippage in nanoporous filtration membranes for both improving the flux and conserving the energy cost.

Adsorption of Water on Cation Supported Layer Silicates (陽이온이 支持된 Layer Silicate 上에서의 水分의 吸着)

  • Jong Taik Kim;Shon, Jong Rack
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.317-324
    • /
    • 1975
  • The adsorptions of gaseous $H_2O\;and\;D_2O\;on\;Na^+-,\;Ca^{2+}-,\;and\;Al^{3+}$ montmorillonites at various temperatures were undertaken. Break down of ir hydroxyl stretching bands into four Gaussian components was made by means of manual technique. Resonance theory of water to form silanol hydroxyl group was supported by $3625cm^{-1}$ band for OH and $2680cm^{-1}$ band for OD which depend on amounts of water adsorbed. The broad bands at about $3400 cm^{-1}\;and\;2475cm^{-1}$ were assigned to stretching band of silanol OH hydrogen bonded to adsorbed water. The prominent $3230 cm^{-1}$ band together with component around $2345 cm^{-1}$ were attributed to adsorbed $H_2O\;and\;D_2O$ respectively. The chemical nature of the hydrogen bonding between adsorbed water and neighboring surface OH was explained adequately in terms of electrostatic interaction.

  • PDF

Release of Ammonia Odor from AAFA (Ammonia Adsorbed Fly Ash) by Installation of NOx Reduction System

  • Kim, Jae-kwan;Park, Seok-un;Lee, Hyun-dong;Chi, Jun-wha
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.437-445
    • /
    • 2016
  • This paper discussed the effect of ammonia concentration adsorbed on fly ash for the ammonia emission as AAFA (Ammonia Adsorbed Fly Ash) produced from coal fired plants due to operation of NOx reduction technologies was landfilled with distilled or sea water at closed and open systems, respectively. Ammonia bisulfate and sulfates adsorbed on fly ash is highly water soluble. The pH of ammonium bisulfate and sulfate solution had significant effect on ammonia odor emission. The effect of temperature on ammonia odor emission from mixture was less than pH, the rate of ammonia emission increased with increased temperature when the pH conditions were kept at constant. Since AAFA increases the pH of solution substantially, $NH_3$ in the ash can release the ammonia order unless it is present at low concentration. $NH_4{^+}$ ion is unstable in fly ash and water mixtures of high pH at open system, which is changed to nitrite or nitrate and then released as ammonia gas. The proper conditions for < 20 ppm of ammonia concentration released from the AAFAs landfilled in ash pond were explored using an open system with sea water. It was therefore proposed that optimal operation to collect AAFA of less than 168 ppm ammonia at the electrostatic precipitator were controlled to ammonia slip with less than 5 ppm at SCR/SNCR installations, and, ammonia odor released from mixture of fly ash of 168 ppm ammonia with sea water under open system has about 20 ppm.

Physico-chemical Characteristics of Ammonia Adsorbed Fly Ash (AAFA)

  • Kim, Jae-kwan;Park, Seok-un;Hong, Jin-pyo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.39-45
    • /
    • 2018
  • Ammonia Adsorbed Fly Ash (AAFA) samples produced from coal fired plants equipped with SNCR (Selective Non-Catalytic Reduction) of nitrogen oxides with urea have been chemically analyzed, and their physical and dissolution properties have been investigated. XRD results for the ammonia component in AAFA ascertained that ABS (ammonium bisulfate) and AS (ammonium sulfate) were deposited on fly ash as $SO_3$ reacted with unreacted ammonia at SNCR. SEM and EDS images showed that fine ashes on large fly ash surface of sphere type were agglomerated, due to adhesive role of ammonium salts attached fly ashes. Dissolution test results of ammonium salts absorbed on AAFA in distilled water or sea water showed that the proportion of un-ionized $NH_3$ to $NH_4{^+}$ were primarily a function of pH and temperature. Increasing pH and temperature causes an increase in the fraction of un-ionized $NH_3$. At pHs of 9.6 and 10.7, un-ionized $NH_3$ and $NH_4{^+}$ ions are present in equal amounts at distilled water and sea water, respectively.