• Title/Summary/Keyword: adsorbates

Search Result 68, Processing Time 0.024 seconds

Effect of Vapor Pressure of Adsorbate on Adsorption Phenomena (흡착질의 증기압이 흡착에 미치는 영향)

  • Kim, Sang-Won;Kwon, Jun-Ho;Kang, Jeong-Hwa;Song, Seung-Koo
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.67-75
    • /
    • 2008
  • Adsorption process is largely influenced by pore structures of adsorbents and physical properties of adsorbates and adsorbents. The previous studies of this laboratory was focused on the role of pore structures of adsorbents. And we found some pores of adsorbates which have larger pore diameters than the diameter of adsorbate are filled with easily. In this study the effects of physical and chemical properties of adsorbates and adsorbents, such as pore size distribution, vapor pressure on adsorption were investigated more thoroughly at the concentration of adsorbate of 1000 ppm. The adsorption in the pore ranges of $2{\sim}4$ times of adsorbates's diameter could be explained by space filling concept. But there was some condensation phenomena at larger pore ranges. The errors between the adsorbed amount of non-polar adsorbates and the calculated amounts by considering factors were found to be 44.46%, positively, and -142%, negatively. When vapor pressure is considered, the errors between the adsorbed amount of non-polar adsorbates and the calculated amounts were in the range of $1.69%{\sim}32.25%$ positively, and negatively $-1.08%{\sim}-63.10%$.

Adsorption of Some Aliphatic Dimercaptans on the Silver Surface Investigated by Raman Spectroscopy

  • Kwon, Cheol-Kee;Kim, Kwan;Kim, Myung-Soo;Lee, Soon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.254-258
    • /
    • 1989
  • Adsorption of 1,3-propanedithiol, 1,4-butanedithiol, 1,5-pentanedithiol, and 1,6-hexanedithiol on silver surface has been investigated by surface-enhanced Raman spectroscopy. It has been found that the conformations of the adsorbates were mainly affected by steric interaction of the adsorbates with the surface. As the alkyl chain length separating the thiol groups increased, surface stacking efficiency became increasingly important in determining conformation of the adsorbate on the surface.

Adsorbate Interactions of Cu(II) Ion-Exchanged into Mesoporous Aluminosilicate MCM-41 Analyzed by Electron Spin Resonance and Electron Spin Echo Modulation

  • Kim, Jeong-Yeon;Yu, Jong-Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.3 no.2
    • /
    • pp.109-126
    • /
    • 1999
  • The location of Cu(II) exchanged into measoporous aluminosilicate MCM-41(AlMCM-41) material and its interaction with various adsorbate molecules were investigated by electron spin resonance and electron spin echo modulation spectroscopies. Cu(II) is fully coordinated to adsorbates in a wide open mesopore of AlMCM-41 for the formation of favorable complexes. It was found that in the fresh hydrated material, Cu(II) is octahedrally coordinated to six water molecules as evidenced by an isotropic room temperature ESR signal. This species is located in a cylindrical MCM-41 channel and rotates rapidly at room temperature. Evacuation at room temperature removes some of these water molecules, leaving the Cu(II) coordinated to less water molecules and anchored to oxygens in an MCM-41 channel wall. Dehydration at 450$^{\circ}C$ produces one Cu(II) species located on the internal wall of a channel, which is easily accessible to adsorbates. Adsorption of adsorbate molecules such as water, methanol, ammonia, pyridine, aniline, acetonitrile, benzene, and ethylene on a dehydrated Cu-AlMCM-41 material causes changes in the ESR spectrum of Cu(II), indicating the complex formation with these adsorbates. Cu(II) forms a complex with six molecules of methanol as evidenced by an isotropic room temperature ESR signal and ESEM analysis like upon water adsorption. Cu(II) also forms a square planar complex containing four molecules of N-containing adsorbates such as ammonia, pyridine and aniline based on resolved nitrogen superhyperfine interaction and their ESR parameters. However, Cu(II) forms a complex with six-molecules of acetonitrile based on ESR parameters. Only one molecule of benzene or ethylene is coordinated to Cu(II).

  • PDF

Adsorptive Characteristics of Benzene and Toluene on Activated Carbon (활성탄상에서 벤젠과 톨루엔의 흡착특성)

  • Park, Byung-Bae;Kim, Do-Su;Kim, Han-Su;Park, Yeong-Seong
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.141-149
    • /
    • 2001
  • The effects of various factors such as adsorption temperature, interstitial velocity, species and concentration of adsorbates(benzene and toluene) and aspect ratio(L/D) on adsorption characteristics were investigated in a fixed bed with activated carbon. The breakthrough time in a fixed bed was decreased with the increasing of adsorption temperature, interstitial velocity and concentration of adsorbates. The interstitial velocity, concentration of adsorbates and adsorption temperature had influenced considerably upon the MTZ(mass transfer zone) and LUB(length of unused bed) obtained through the breakthrough curves, while aspect ratio(L/D) had smaller effect than former factors. Especially, the concentration of adsorbates among factors have the largest effect on MTZ and LUB. From comparison with the model isotherms, such as the Langmuir, Freundlich and Langmuir-Freundlich, the experimental isotherm data of benzene and toluene agreed farily well to three adsorption isotherm models.

  • PDF

A theoretical study of the adsorption characteristics of gaseous molecules on the carbonaceous adsorbent (탄소질 흡착제에 가스 상 분자의 흡착 특성에 대한 이론적 연구)

  • Shin, Chang-Ho;Lee, Young-Taeg;Kim, Chung-Ryul;Kim, Seung-Joon
    • Analytical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.309-319
    • /
    • 2005
  • The adsorption characteristics of gaseous molecules on the carbonaceous adsorbent have been investigated at various temperature and pressure with different pore sizes using Grand Canonical Monte Carlo (GCMC) simulation method. The geometrical parameters and spectroscopic properties of adsorbates have been computed using density functional theory (DFT). At higher temperatures is the adsorption amount of adsorbates is decreased due to their vaporization. Considering the pore size effect, the adsorption characteristic depends on the adsorbate size, polarity and interaction between adsorbates, etc. At all cases employed in this study, the adsorption amount of adsorbates on the carbonaceous adsorbent is increased in the order $NH_3$ < $H_2S$ < $CH_3SH$, and this result is qualitatively in good agreement with the experimental observation.

Adsorption Affected by Relationship Between Pore Sizes of Activated Carbons and Physical Properties of Adsorbates (활성탄의 세공크기와 흡착질의 물리적 특성과의 연관성이 흡착에 미치는 영향)

  • Kang, Jeong-Hwa;Kwon, Jun-Ho;Kim, Sang-Won;Song, Seung-Koo
    • Journal of Environmental Science International
    • /
    • v.16 no.3
    • /
    • pp.377-383
    • /
    • 2007
  • In this study, the relationship between the pore size distribution and the adsorption amount of adsorbates is investigated in detail. Adsorption amounts of non-polar adsorbates were greater than those of polar adsorbates because of slight negative charge on surfaces of adsorbents. The adsorption of benzene on the surface of absorbents was largely influenced by the specific pore size of $2{\sim}4$ times of benzene diameter. But in case of toluene, the adsorption of toluene was affected by pore sizes of $2{\sim}4$ times as well as $4{\sim}6$ times of the diameter of toluene. Both acetone and MEK were examined by the same method. The adsorption of acetone was influenced by pore sizes of $2{\sim}4$ times of the diameter of acetone. But acetone does not look to be built up multi-layer on those pore sizes. Since acetone molecule is small and its mobility is so fast, it is assumed that the adsorption and desorption of acetone is simultaneously occurred at the same time even at room temperature. In case of MEK, MEK was effected by pore sizes of $2{\sim}4$ times of the diameter of MEK.

Electron Transport Mechanisms in Ag Schottky Contacts Fabricated on O-polar and Nonpolar m-plane Bulk ZnO

  • Kim, Hogyoung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.5
    • /
    • pp.285-289
    • /
    • 2015
  • We prepared silver Schottky contacts to O-polar and nonpolar m-plane bulk ZnO wafers. Then, by considering various transport models, we performed a comparative analysis of the current transport properties of Ag/bulk ZnO Schottky diodes, which were measured at 300, 200, and 100 K. The fitting of the forward bias current-voltage (I-V) characteristics revealed that the tunneling current is dominant as the transport component in both the samples. Compared to thermionic emission (TE), a stronger contribution of tunneling current was observed at low temperature. The reverse bias I-V characteristics were well fitted with the thermionic field emission (TFE) in both the samples. The presence of acceptor-like adsorbates, such as O2 and H2O, modulated the surface conductive state of ZnO, thereby affecting the tunneling effect. The degree of activation/passivation of acceptor-like adsorbates might be different in both the samples owing to their different surface morphologies and surface defects (e.g., oxygen vacancies).

STM Study of CO and NO on Pt(001)

  • M.-B. Song;K. Momoi;Lee, C.-W.;M. Ito
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.7
    • /
    • pp.705-708
    • /
    • 2000
  • Adsorption of CO and NO Moleculcs on a Pt(OO1)-hex R0.7° surface at 90 K is investigated by scanning tunneling microscopy (STM) in ultra-high vacuum environments. At an initial stage of adsorption, both molecules are preferentially adsorbed on th e Iess coordinated Pt atoms of the surface with hexagonal structure, which act as active sites. Domains of the adsorbates grow parallel to the stripe structure of the reconstructed surface because of Iower migration energy in this direction. The extra Pt atoms produced from adsorbate-induced restructuring give rise to anisotropic islands on the ( 1 x 1 ) surface. Each of the adsorbed NO molecules at low coveragcs is atomicalIy resolved during STM observation. However, the spots of the adsorbed CO are invisible.Such a behavior is probably explained in terms of different interactions between the adsorbates.

A Study on the Relationship between the Pore Volume Distributions of Some Adsorbents Including Charcoal and the Rates of Adsorption of a Number of Cigarette Aerosol Ingredients such as Tar, Nicotine and etc. (활성탄을 포함하는 몇 가지 흡착제의 동공부피 분포와 이들의 흡착제에 대한 타르, 유기산 등 연초 에어로솔 성분의 흡착률과의 관련성)

  • Ick Kyun Kang;Sang Hyun Han;Yong Kwon Kim;Eun Hee Cha
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.350-356
    • /
    • 1989
  • The analysis of adsortion behaviors of some cigarett aerosol ingredients such as tar, nicotine, carbon monoxide and a number of organic acids has shown that the rates of adsorption of the adsorbates of lower boiling point had increased in accordance with increasing cumulative pore volume, while that of higher doiling point decreased with increasing pore volume of smaller radius. The adsorbents used here were charcoal, silica gel, alumina, and activated clay. The common principle that the adsorbents of greater specific surface area adsorb the larger amount of adsorbates appeared to be disturbed in the adsortion of higher boiling point adsorbates. This confirmation was made mainly by analyzing the adsorption behaviors with regard to the pore volume distributions evaluated on the bases of desorption isotherms.

  • PDF