• Title/Summary/Keyword: adrenergic receptor

Search Result 246, Processing Time 0.027 seconds

Mutations of ${\beta}3$ Adrenergic Receptor in Korean Patients treated with Herbal Dieting Program for Obesity (한방비만치료임상례중 ${\beta}3$ Adrenergic Receptor 변이율에 대한 고찰 (비만유전자보유유무에 따른 치료효과 비교))

  • Kim, Dong-Yeol;Kim, Kil-Soo;Kim, Sun-Min
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.2 no.1
    • /
    • pp.43-52
    • /
    • 2002
  • Purpose & Methods: In order to study obese gene mutation rate in obese Korean patients and to investigate the effect at Chegamuiyiin-tang and electro-lipolysis-acupuncture on obesity treatment. the difference of the reaction to herbal dieting between patients with ${\beta}3$ adrenergic receptor mutation and the patients with wild type ${\beta}3$ adrenergic receptor is observed. Results: Chegamuiyiin-tang and electro-lipolysis-acupuncture treatment are effective on the treatment of obesity in weight reduction. body fat reduction and the circumferences of arm, abdomen, hip and thigh. In the comparison of ${\beta}3$ adrenergic receptor wild type and ${\beta}3$ adrenergic receptor mutation groups, body fat was more reduced with statistical significance, and as for BMI change and body weight change were higher in ${\beta}3$ adrenergic receptor mutation groups with no statistical significance. In the comparison of ${\beta}3$ adrenergic receptor wild type and ${\beta}3$ adrenergic receptor mutation groups among BMI under 25 patients change rate of body weight. BMI, body fact percentage, WHR and body circumference were higher in ${\beta}3$ adrenergic receptor mutation group than in ${\beta}3$ adrenergic receptor wild type group. Conclusion: These results imply that herbal dieting program combined with electro-lipolysis-acupuncture is more effective on reducing body weight and body fat in ${\beta}3$ adrenergic receptor mutation group than wild type group, and that the earlier the treatment is applied, the more effective it is.

  • PDF

The Third Intracellular Loop of truman ${\beta}_2$-adrenergic Receptor Expressed in E. coli Decreased Binding Affinity of Isoproterenol to ${\beta}_2$-adrenergic Receptor

  • Shin, Jin-Chul;Shin, Chan-Young;Lee, Mi-Ok;Lee, Sang-Bong;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.4 no.1
    • /
    • pp.103-109
    • /
    • 1996
  • To investigate the effect of the third intracellular loop (i3 loop) peptide of human $\beta$$_2$-adrenergic receptor on receptor agonist binding, we expressed third intracellular loop region of human $\beta$$_2$-adrenergic receptor as glutathione S-transferase fusion protein in E. coli. DNA fragment of the receptor gene which encodes amino acid 221-274 of human $\beta$$_2$-adrenergic receptor was amplified by polymerase chain reaction and subcloned into the bacterial fusion protein expression vector pGEX-CS and expressed as a form of glutathione-S-transferase (GST) fusion protein in E. coli DH5$\alpha$. The receptor fusion protein was identified by SDS-PAGE and Western blot using monoclonal anti-GST antibody. The fusion protein expressed in this study was purified to an apparent homogeneity by glutathione Sepharose CL-4B affinity chromatography. The purified i3 loop fusion proteins at a concentration of 10 $\mu\textrm{g}$/ι caused right shift of the isoproterenol competition curve of [$^3$H]Dihydroalprenolol binding to hamster lung $\beta$$_2$-adrenergic receptor indicating lowered affinity of isoproterenol to $\beta$$_2$-adrenergic receptor possibly due to the uncoupling of receptor and G protein in the presence of the fusion protein. The uncoupling of receptor and G protein suggests that i3 loop region plays a critical role on $\beta$$_2$-adrenergic receptor G protein coupling.

  • PDF

Practical and Effective Method for the Solubilization and Characterization of Mammalian ${\beta}$-adrenergic receptor

  • Shin, Chan-Young;Kim, Hee-Jin;Lee, Sang-Bong;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.1 no.2
    • /
    • pp.188-195
    • /
    • 1993
  • In order to understand the machanism of action and regulation of ${\beta}$-adrenergic receptor in terms of molecular level, the purification of receptor protein has a fundamental importance. Moreover, species differences among avian, amphibian and mammalian ${\beta}$-adrenergic receptors make it more important to purify mammalian ${\beta}$-adrenergic receptor. Because ${\beta}$-adrenergic receptor is an integral membrane protein, it must be solubilized from the membrane for the purification. The purpose of the present study was to solubilize and characterize the mammalian $\beta$-adrenergic receptor from guinea pig lung in quantities by more efficient and practical method eventually to purify receptor. Guinea pig lung membrane preparation was solubilized by sequential treatment of buffers containing low and high concentration of digitonin which are 0.2 and 1.2% respectively. About 50% of the total receptor pool was released by this double extraction procedure. The $\beta$-adrenoceptors in the digitonin extract were identified using the ${\beta}$-adrenergic antagonist, (-)-[$^3H$]-dihydroalprenolol ([$^3H$]DHA). The solubilized receptor retained all of the essential characteristics of membrane-bound receptor, namely saturability; stereoselectivity; high affinity to ${\beta}$-adrenergic drugs. For the measurement of soluble receptor activity, Sephadex G-50 chromatography method has been widely used. Inspite of its accuracy and wide acceptance, this technique employed troublesome column work which required long time to assay the activity of receptor. We employed another methods to measure receptor activity. When using 0.5% polyethylenimine pretreated GF/B glass fiber filter, filtration technique could be used to measure soluble receptor activity. This technique enabled us to reduce the total amount of time to assay by a factor of 4 as well as to detect soluble receptor. In the present study, we could establish more efficient and practical solubilization method of mammalian $\beta$-adrenergic receptor. The rapidity and high yield of this solubilization scheme, together with the favorable recovery of the receptor activity, are significant steps toward the ultimate purification of the mammalian $\beta$-adrenergic receptor. The result of this study together with more convenient purification method could provide large amount of purified receptor with ease for various research purposes.

  • PDF

[${\alpha}-Adrenergic$ and Cholinergic Receptor Agonists Modulate Voltage-Gated $Ca^{2+}$ Channels

  • Nah, Seung-Yeol;Kim, Jae-Ha;Kim, Cheon-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.485-493
    • /
    • 1997
  • We investigated the effect of ${\alpha}-adrenergic$ and cholinergic receptor agonists on $Ca^{2+}$ current in adult rat trigeminal ganglion neurons using whole-cell patch clamp methods. The application of acetylcholine, carbachol, and oxotremorine ($50\;{\mu}M\;each$) produced a rapid and reversible reduction of the $Ca^{2+}$ current by $17{\pm}6%,\;19{\pm}3%,\;and\;18{\pm}4%$, respectively. Atropine, a muscarinic antagonist, blocked carbachol- induced $Ca^{2+}$ current inhibition to $3{\pm}1%$. Norepinephrine ($50\;{\mu}M$) reduced $Ca^{2+}$ current by $18{\pm}2%$, while clonidine ($50\;{\mu}M$), an ${\alpha}2-adrenergic$ receptor agonist, inhibited $Ca^{2+}$ current by only $4{\pm}1%$. Yohimbine, an ${\alpha}2-adrenergic$ receptor antagonist, did not block the inhibitory effect of norepinephrine on $Ca^{2+}$ current, whereas prazosin, an ${\alpha}1-adrenergic$ receptor antagonist, attenuated the inhibitory effect of norepinephrine on $Ca^{2+}$ current to $6{\pm}1%$. This pharmacology contrasts with ${\alpha}2-adrenergic$ receptor modulation of $Ca^{2+}$ channels in rat sympathetic neurons, which is sensitive to clonidine and blocked by yohimbine. Our data suggest that the modulation of voltage dependent $Ca^{2+}$ channel by norepinephrine is mediated via an α1-adrenergic receptor. Pretreatment with pertussis toxin (250 ng/ml) for 16 h greatly reduced norepinephrine- and carbachol-induced $Ca^{2+}$ current inhibition from $17{\pm}3%\;and\;18{\pm}3%\;to\;2{\pm}1%\;and\;2{\pm}1%$, respectively. These results demonstrate that norepinephrine, through an ${\alpha}1-adrenergic$ receptor, and carbachol, through a muscarinic receptor, inhibit $Ca^{2+}$ currents in adult rat trigeminal ganglion neurons via pertussis toxin sensitive GTP-binding proteins.

  • PDF

Relaxative Effect of Transmural Nerve Stimulation via ${\beta}$-adrenergic Nerve on the Isolated Uterine Smooth Muscle Motility of Pigs (돼지 적출 자궁 평활근의 운동성에 있어서 transmural nerve stimulation에 대한 ${\beta}$-adrenergic 신경의 이완작용)

  • Kim, Joo-Heon;Jeon, Jae-Cheul;Rho, Gyu-Jin;Hong, Yong-Geun;Choe, Sang-Yong
    • Journal of Veterinary Clinics
    • /
    • v.23 no.4
    • /
    • pp.421-426
    • /
    • 2006
  • The effects of transmural nerve stimulation induced releasing neurotransmitters on the changes of swine uterine smooth muscle motility were examined by polygraph through isometric force transducer. The frequency dependent relaxation and rebound contraction were revealed on precontraction with histamine by transmural nerve stimulation. The rebound contraction by transmural nerve stimulation was inhibited by nonselective ${\alpha}$-adrenergic receptor antagonist, phentolamine, and the relaxation by transmural nerve stimulation was blocked by nonselective ${\beta}$-adrenergic receptor antagonist, propranolol. The relaxation induced by nonselective ${\beta}$-adrenergic receptor agonist, isoproterenol on precontraction with histamine were the dose dependent manner and this relaxation was blocked by nonselective ${\beta}$-adrenergic receptor antagonist, propranolol in isolated uterine smooth muscle of pig. These results suggest that endogenous neurotransmitters on smooth muscle relaxation was influenced by ${\beta}$-adrenergic receptor in swine.

C-terminal Truncation Mutant of the Human ${\beta}_2$-adrenergic Receptor Expressed in E. coli as a Fusion Protein Retains Ligand Binding Affinity

  • Shin, Jin-Chul;Lee, Sang-Derk;Shin, Chan-Young;Lee, Sang-Bong;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.4 no.1
    • /
    • pp.97-102
    • /
    • 1996
  • To investigate whether human $\beta$$_2$-adrenergic receptor devoid of the C-terminal two transmembrane helices retain its ligand binding activity and specificity, 5'780-bp DNA fragment of the receptor gene which encodes amino acid 1-260 of human $\beta$$_2$-adrenergic receptor was subcloned into the bacterial fusion protein expression vector and expressed as a form of glutathione-S-transferase (GST) fusion protein in E. coli DH5$\alpha$. The receptor fusion protein was expressed as a membrane bound form which was verified by SDS-PAGE and Western blot. The fusion protein expressed in this study specifically bound $\beta$-adrenergic receptor ligand [$^3$H] Dihydroalprenolol. In saturation ligand binding assay, the $K_{d}$ value was 7.6 nM which was similar to that of intact $\beta$$_2$-adrenergic receptor in normal animal tissue ( $K_{d}$=1~2 nM) and the $B_{max}$ value was 266 fmol/mg membrane protein. In competition binding assay, the order of binding affinity of various adrenergic receptor agonists to the fusion protein was isoproterenol》epinephrine norepinephrine, which was similar to that of intact receptor in normal animal tissue. These results suggest that N-terminal five transmembrane helices of the $\beta$$_2$-adrenergic receptor be sufficient to determine the ligand binding activity and specificity, irrespective of the presence or absence of the C-terminal two transmembrane helices.s.s.s.

  • PDF

Effects of ${\alpha}_1-Adrenergic$ Receptor Stimulation on Intracellular $Na^+$ Activity and Twitch Force in Guinea-Pig Ventricular Muscles

  • Chae, Soo-Wan;Gong, Q.Y.;Wang, D.Y.;Lee, Chin-O.
    • The Korean Journal of Physiology
    • /
    • v.29 no.2
    • /
    • pp.203-216
    • /
    • 1995
  • The effects of ${\alpha}_1-adrenergic$ receptor stimulation on membrane potential, intracellular $Na^+$ activity, and twitch force were investigated in ventricular muscles from guinea-pig hearts. Action potentials, intracellular $Na^+$ activity, and twitch force of ventricular papillary muscles were measured simultaneously under various experimental conditions. Stimulation of the ${\alpha}_1-adrenergic$ receptor by phenylephrine produced variable changes in action potential duration, a slight hyperpolarization of the diastolic membrane potential, a decrease in intracellular $Na^+$ activity, and a biphasic inotropic response in which a transient negative inotropic response was followed by a sustained positive inotropic response. These changes were blocked by prazosin, an antagonist of the ${\alpha}_1-adrenergic$ receptor, but not by atenolol, an antagonist of the ${\beta}-adrenergic$ receptor. This indicates that the changes in membrane potential, intracellular $Na^+$ activity, and twitch force are mediated by stimulation of the ${\alpha}_1-adrenergic$ receptor, but not by stimulation of ${\beta}-adrenergic$ receptor. The decrease in intracellular $Na^+$ activity was not observed in quiescent muscles, depending on the rate of the action pontentials in beating muscles. The intracellular $Na^+$ activity decrease was substantially inhibited by tetrodotoxin. However, the decrease in intracellular $Na^+$ activity was not affected by an inhibition of the $Na^+-K^+$ pump. Therefore, the decrease in intracellular $Na^+$ activity mediated by the ${\alpha}_1-adrenergic$ receptor appears to be due to a reduction of $Na^+$ influx during the action potential, perhaps through tetrodotoxin sensitive $Na^+$ channels. Our study also revealed that the decrease in intracellular $Na^+$ activity might be related to the transient negative inotropic response. The intracellular $Na^+$ activity decrease could lower intracellular $Ca^{2+}$ through the $Na^+-Ca^{2+}$ exchanger and thereby produce a decline in twitch force.

  • PDF

Purification and Characterization of the $\beta$-Adrenergic Receptor from Rat Cerebral Cortex

  • 신찬영;김희진;노민수;함경수;강현삼;고광호
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.292-292
    • /
    • 1994
  • Catecholamines acting through ${\beta}$-adrenergic receptors regulate a wide range of metabolic activities in mammalian tissue. Of the various receptors coupled to adenylate cyclase, the ${\beta}$-adrenergic receptors are the most extensively characterized and have been purified from both nonmammal ian and mammal inn sources. However, most studies of the molecular properties of ${\beta}$-adrenergic receptors have been confined to peripheral tissues. Less progress has been achieved in characterizing the brain ${\beta}$-adrenergic receptor The goal of the present study was, therefore, to purify and characterize the neurotransmitter receptor proteins. To achieve this goal, the following stepwise experiments were performed. At first, the membrane-bound ${\beta}$-adrenergic receptors were. solubi1ized from brain tissue. Secondly, conditions for affinity chromatography were determined to purify the solubilized receptors effectively. Finally, the large-scale purification was performed and the characteristics of the purified ${\beta}$-adrenergic receptor were examined.

  • PDF

The Analgesic Effect and the Mechanism of Electroacupuncture on Thermal Hyperalgesia in the Rat Model of Collagenase-induced Arthritis: Mediation by Adrenergic Receptors (Collagenase-induced Arthritis Rat Model에서 Thermal Hyperalgesia에 대한 전침(電鍼)의 진통효과(鎭痛效果) 및 기전연구: Adrenergic Mechanism에 대(對)한 연구(硏究))

  • Seo, Byung-Kwan;Park, Dong-Suk;Baek, Yong-Hyeon
    • Journal of Acupuncture Research
    • /
    • v.28 no.2
    • /
    • pp.57-67
    • /
    • 2011
  • 목적 : Collagenase-induced osteoarthritis(OA) 동물 모델에서 전침의 adrenergic mechanism을 연구하고자 한다. 방법 : Collagenase-induced arthritis(CIA)를 유발하기 위하여 5주령의 male Sprague-Dawley rat의 뒷다리 좌측 무릎 관절에 0.05ml의 4mg/ml collagenase solution을 intra-articular 주입하고, 다시 4일 후에 같은 부위에 같은 농도의 collagenase solution을 intra-articular boosting injection 시행한 뒤, gross, histopathological features 및 biomarker activity 변화를 관찰하였다. 예비실험을 통하여 CIA rat model에서 진통효과를 발휘하는 것으로 확인한, 족삼리(足三里) ($ST_{36}$)에 대한 저빈도 train pulse EA stimulation (2Hz, 0.07 mA, 0.3ms)을 침치료 방법으로 적용하였다. 전침의 진통기전을 확인하기 위하여, ${\alpha}1$-adrenergic antagonist (prazosin, 1 mg/kg, i.p.), ${\alpha}2$-adrenergic receptor antagonist (yohimbine, 2mg/kg, i.p.), ${\alpha}1$-adrenergic receptor agonist(phenylephrine, 2mg/kg, i.p.), ${\alpha}2$-adrenergic receptor agonist(clonidine, $40{\mu}g$/kg, i.p.)을 전침시행 20분 전에 복강 내로 전처치하였다. Tail flick unit(Ugo Basile Model 7360)을 이용하여 열자극에 대한 통증역치를 측정하였다. 결과 : 퇴행성관절염 징후(gross, histopathological features)와 통증역치의 변화가 최대값을 나타내는 CIA 유발 4주차에 저빈도 전침자극(train pulse, 2Hz, 0.07mA, 0.3ms)을 족삼리($ST_{36}$)에 적용하였으며, 족삼리 전침의 진통효과는 ${\alpha}2$-adrenergic receptor antagonist(yohimbine, 2mg/kg, i.p.)전처치에 의해 억제되었으나, ${\alpha}1$-adrenergic antagonist(prazosin, 1 mg/kg, i.p.)전처치에는 억제되지 않았다. 또 ${\alpha}2$-adrenergic receptor agonist(clonidine, $40{\mu}g$/kg, i.p.)의 전처치를 통하여 유의한 synergistic analgesic effect가 관찰되었으나, ${\alpha}1$-adrenergic receptor agonist(phenylephrine, 2mg/kg, i.p.)의 전처치는 전침의 진통효과에 synergistic effect를 미치지 않는 것으로 나타났다. 결론 : 저빈도 족삼리 전침은 CIA로 유발된 염증성 통증에 대하여 진통효과를 발휘하며, 이는 ${\alpha}2$-adrenergic receptor에 의하여 매개되는 것으로 보이며 ${\alpha}1$-adrenergic receptor는 영향을 미치지 않는 것으로 사료된다.

사람의 $\beta$$_2$-adrenergic receptor 유전자의 cloning 및 효모에서의 발현

  • 강현삼;고광호
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.61-61
    • /
    • 1993
  • 사람의 혈액의 백혈구로부터 Polymerase Chain Reaction 방법으로 $\beta$$_2$-adrenergic receptor 유전자를 증폭하였다. 이 증폭된 유전자를 pbluescript KS(+)에 cloning하였으며, 제한효소지도 작성과 부분적인 염기배열 확인으로 증폭된 유전자가 사람의 $\beta$$_2$-adrenergic receptor 유전자임을 확인하였다. $\beta$$_2$-adrenergic receptor 유전자를 N말단의 아미노산이 21개 제거되도록 결손시킨후 yeast의 pSec5의 Killer toxin signal sequence의 뒤에 in-frame으로 연결하였다. 현재 효모에서의 발현양상 및 발현된 단백질의 활성을 조사중이다.

  • PDF