• Title/Summary/Keyword: adomian decomposition method

Search Result 30, Processing Time 0.026 seconds

Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline

  • Bozyigit, Baran;Yesilce, Yusuf;Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.65-77
    • /
    • 2017
  • The free vibration analysis of fluid conveying Timoshenko pipeline with different boundary conditions using Differential Transform Method (DTM) and Adomian Decomposition Method (ADM) has not been investigated by any of the studies in open literature so far. Natural frequencies, modes and critical fluid velocity of the pipelines on different supports are analyzed based on Timoshenko model by using DTM and ADM in this study. At first, the governing differential equations of motion of fluid conveying Timoshenko pipeline in free vibration are derived. Parameter for the nondimensionalized multiplication factor for the fluid velocity is incorporated into the equations of motion in order to investigate its effects on the natural frequencies. For solution, the terms are found directly from the analytical solution of the differential equation that describes the deformations of the cross-section according to Timoshenko beam theory. After the analytical solution, the efficient and easy mathematical techniques called DTM and ADM are used to solve the governing differential equations of the motion, respectively. The calculated natural frequencies of fluid conveying Timoshenko pipelines with various combinations of boundary conditions using DTM and ADM are tabulated in several tables and figures and are compared with the results of Analytical Method (ANM) where a very good agreement is observed. Finally, the critical fluid velocities are calculated for different boundary conditions and the first five mode shapes are presented in graphs.

IMPLEMENTATION OF LAPLACE ADOMIAN DECOMPOSITION AND DIFFERENTIAL TRANSFORM METHODS FOR SARS-COV-2 MODEL

  • N. JEEVA;K.M. DHARMALINGAM;S.E. FADUGBA;M.C. KEKANA;A.A. ADENIJI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.945-968
    • /
    • 2024
  • This study focuses on SIR model for SARS-CoV-2. The SIR model classifies a population into three compartments: susceptible S(t), infected I(t), and recovered R(t) individuals. The SARS-CoV-2 model considers various factors, such as immigration, birth rate, death rate, contact rate, recovery rate, and interactions between infected and healthy individuals to explore their impact on population dynamics during the pandemic. To analyze this model, we employed two powerful semi-analytical methods: the Laplace Adomian decomposition method (LADM) and the differential transform method (DTM). Both techniques demonstrated their efficacy by providing highly accurate approximate solutions with minimal iterations. Furthermore, to gain a comprehensive understanding of the system behavior, we conducted a comparison with the numerical simulations. This comparative analysis enabled us to validate the results and to gain valuable understanding of the responses of SARS-CoV-2 model across different scenarios.

Exact solutions to the boundary value problems by VIM

  • Jang, Bong-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1371-1377
    • /
    • 2008
  • In this paper, we have employed the variational iteration method to solve the boundary value problems. Numerical results reveal that it is a very effective method compared with the results obtained by using the Adomian decomposition method in Wazwaz, A. M. (2000).

  • PDF

EXISTENCE AND UNIQUENESS RESULTS FOR CAPUTO FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS

  • HAMOUD, AHMED A.;ABDO, MOHAMMED S.;GHADLE, KIRTIWANT P.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.3
    • /
    • pp.163-177
    • /
    • 2018
  • This paper successfully applies the modified Adomian decomposition method to find the approximate solutions of the Caputo fractional integro-differential equations. The reliability of the method and reduction in the size of the computational work give this method a wider applicability. Also, the behavior of the solution can be formally determined by analytical approximation. Moreover, we proved the existence and uniqueness results and convergence of the solution. Finally, an example is included to demonstrate the validity and applicability of the proposed technique.

NUMERICAL SOLUTIONS OF NONLINEAR VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS BY USING MADM AND VIM

  • Abed, Ayoob M.;Younis, Muhammed F.;Hamoud, Ahmed A.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.189-201
    • /
    • 2022
  • The aim of the current work is to investigate the numerical study of a nonlinear Volterra-Fredholm integro-differential equation with initial conditions. Our approximation techniques modified adomian decomposition method (MADM) and variational iteration method (VIM) are based on the product integration methods in conjunction with iterative schemes. The convergence of the proposed methods have been proved. We conclude the paper with numerical examples to illustrate the effectiveness of our methods.

APPLICATION OF ADOMIAN'S APPROXIMATION TO BLOOD FLOW THROUGH ARTERIES IN THE PRESENCE OF A MAGNETIC FIELD

  • Haldar, K.
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.267-279
    • /
    • 2003
  • The present investigation deals with the application of Adomian's decomposition method to blood flow through a constricted artery in the presence of an external transverse magnetic field which is applied uniformly. The blood flowing through the tube is assumed to be Newtonian in character. The expressions for the two-term approximation to the solution of stream function, axial velocity component and wall shear stress are obtained in this analysis. The numerical solutions of the wall shear stress for different values of Reynold number and Hartmann number are shown graphically. The solution of this theoretical result for a particular Hart-mann number is compared with the integral method solution of Morgan and Young[17].

AMDM for free vibration analysis of rotating tapered beams

  • Mao, Qibo
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.419-432
    • /
    • 2015
  • The free vibration of rotating Euler-Bernoulli beams with the thickness and/or width of the cross-section vary linearly along the length is investigated by using the Adomian modified decomposition method (AMDM). Based on the AMDM, the governing differential equation for the rotating tapered beam becomes a recursive algebraic equation. By using the boundary condition equations, the dimensionless natural frequencies and the closed form series solution of the corresponding mode shapes can be easily obtained simultaneously. The computed results for different taper ratios as well as different offset length and rotational speeds are presented in several tables and figures. The accuracy is assured from the convergence and comparison with the previous published results. It is shown that the AMDM provides an accurate and straightforward method of free vibration analysis of rotating tapered beams.

SEMI-ANALYTICAL SOLUTION TO A COUPLED LINEAR INCOMMENSURATE SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

  • Iqbal M. Batiha;Nashat Alamarat;Shameseddin Alshorm;O. Y. Ababneh;Shaher Momani
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.449-471
    • /
    • 2023
  • In this paper, we study a linear system of homogeneous commensurate /incommensurate fractional-order differential equations by developing a new semi-analytical scheme. In particular, by decoupling the system into two fractional-order differential equations, so that the first equation of order (δ + γ), while the second equation depends on the solution for the first equation, we have solved the under consideration system, where 0 < δ, γ ≤ 1. With the help of using the Adomian decomposition method (ADM), we obtain the general solution. The efficiency of this method is verified by solving several numerical examples.

DECOMPOSITION METHOD FOR SOLVING NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • KAMEL AL-KHALED;ALLAN FATHI
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.415-425
    • /
    • 2005
  • This paper outlines a reliable strategy for solving nonlinear Volterra-Fredholm integro-differential equations. The modified form of Adomian decomposition method is found to be fast and accurate. Numerical examples are presented to illustrate the accuracy of the method.

EXISTENCE AND UNIQUENESS THEOREMS OF SECOND-ORDER EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Bougoffa, Lazhar;Khanfer, Ammar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.899-911
    • /
    • 2018
  • In this paper, we consider the second-order nonlinear differential equation with the nonlocal boundary conditions. We first reformulate this boundary value problem as a fixed point problem for a Fredholm integral equation operator, and then present a result on the existence and uniqueness of the solution by using the contraction mapping theorem. Furthermore, we establish a sufficient condition on the functions ${\mu}$ and $h_i$, i = 1, 2 that guarantee a unique solution for this nonlocal problem in a Hilbert space. Also, accurate analytic solutions in series forms for this boundary value problems are obtained by the Adomian decomposition method (ADM).