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IMPLEMENTATION OF LAPLACE ADOMIAN

DECOMPOSITION AND DIFFERENTIAL TRANSFORM

METHODS FOR SARS-COV-2 MODEL
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Abstract. This study focuses on SIR model for SARS-CoV-2. The SIR

model classifies a population into three compartments: susceptible S(t),
infected I(t), and recovered R(t) individuals. The SARS-CoV-2 model con-

siders various factors, such as immigration, birth rate, death rate, contact

rate, recovery rate, and interactions between infected and healthy individ-
uals to explore their impact on population dynamics during the pandemic.

To analyze this model, we employed two powerful semi-analytical methods:

the Laplace Adomian decomposition method (LADM) and the differential
transform method (DTM). Both techniques demonstrated their efficacy by

providing highly accurate approximate solutions with minimal iterations.

Furthermore, to gain a comprehensive understanding of the system be-
havior, we conducted a comparison with the numerical simulations. This

comparative analysis enabled us to validate the results and to gain valu-

able understanding of the responses of SARS-CoV-2 model across different
scenarios.

AMS Mathematics Subject Classification : 34E05, 34E10, 65L05.

Key words and phrases : SARS-CoV-2, SIR model, Laplace Adomian
decomposition method (LADM), differential transform method (DTM),
mathematical modeling, numerical simulation.

1. Introduction

SARS-CoV-2, a novel coronavirus, has caused a worldwide outbreak of the
coronavirus disease 2019 (COVID-19). The virus was first identified in Wuhan,
China, in December 2019 and has since spread globally, leading to a widespread
pandemic [1]. Belonging to the coronavirus family, SARS-CoV-2 is known to
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cause respiratory illnesses in both animals and humans [2]–[7]. Extensive re-
search is currently dedicated to gaining deeper insights into SARS-CoV-2, focus-
ing on understanding the virus, developing effective treatments, and implement-
ing preventive measures to prevent future outbreaks via mathematical models
[8]–[9]. The SIR model, a well-established mathematical epidemiological frame-
work, has been widely utilized to analyze the transmission of infectious diseases
within a population. The term ”SIR” represents three compartments in which
individuals in the population are classified as: Susceptible, Infected, and Re-
covered. Through a set of differential equations, the SIR model captures the
dynamic interplay among these compartments over time, providing valuable in-
sights into disease transmission and progression [12]–[13]. To specifically study
the transmission and spread of COVID-19 caused by SARS-CoV-2, the SIR
COVID model was developed as a modified version of the classical SIR model.
This adapted model has demonstrated its efficacy in analyzing and predicting
the spread of COVID-19 in various populations. It plays a crucial role in assess-
ing the impact of interventions, such as social distancing, vaccination campaigns,
and quarantine measures, on controlling the spread of the virus. Moreover, the
SIR COVID model serves as an indispensable tool for guiding public health
strategies and decision-making and enhancing the management and control of
the ongoing pandemic. In conclusion, both SARS-CoV-2 and the SIR COVID
model are instrumental in comprehending and combating the COVID-19 pan-
demic. Continuous efforts in research and modeling have contribute to the de-
velopment of more effective strategies for public health and disease management
[14]–[18].
This novel mathematical model for SARS-CoV-2 represents an innovative ap-
proach aimed at gaining deeper insights into the transmission dynamics of the
virus and its effects on the population during the ongoing COVID-19 pandemic.
By considering factors such as immigration, protective measures, exposure rate,
cure rate, and interactions between infected and healthy individuals, this model
seeks to understand the dynamics andimpact of the pandemic comprehensively
[19].
Analytical approaches assist in resolving challenging mathematical problems by
combining numerical analysis with analytical accuracy. These strategies are ex-
tremely helpful for dealing with nonlinearity and system complexity. Analytical
expressions and numerical computations provide precise and effective solutions
to real-world challenges across various domains. The Laplace Adomian decom-
position method (LADM) is a powerful hybrid technique that merges the Laplace
transform and Adomian decomposition method (ADM) for solving differential
equations, especially those involving nonlinearity. Its application offers enhanced
efficiency and accuracy compared to traditional methods. One significant ad-
vantage of LADM is its ability to handle nonlinear differential equations without
the need for linearization, perturbation, transformation, or discrimination. This
characteristic streamlines the problem-solving process and allows more precise
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results. LADM provides an analytical solution represented as a rapidly conver-
gent infinite power series with easily computable terms. This feature contributes
to its applicability to a wide range of scientific and engineering domains [20]–
[23]. Its success is evident in various fields, such as fluid dynamics, heat transfer,
population dynamics, and more, where LADM has been effectively applied to
address complex problems and deliver valuable insights [24]–[26]. Its versatility
and accuracy make it a valuable tool for researchers and practitioners seeking
robust solutions for challenging differential equations in diverse applications.
Differential transform method (DTM) is a semi-analytical approach that utilizes
the Taylor series expansion concept. The primary strategy involves transform-
ing the derivatives from the original differential equation into discrete difference
equations, which are then addressed through iterative methods. The Numerical
approach of DTM for solving nonlinear equations was studied by [27]. Subse-
quently, this approach has been effectively applied to solve various mathematical
problems [29]-[30]. In the study by Harir et al. [28], the authors applied the
DTM to solve an SEIR model specific to COVID-19. Through a comparative
analysis with the RK4 technique, the efficacy of the DTM was demonstrated.
In a study conducted by Adeniji [31], the DTM alongside LADM was employed
to address a rotavirus model, and the study provided a thorough explanation
of the convergence of DTM in system of nonlinear equations. The Differential
transform method offers several advantages, including the simplicity of compu-
tation and ease of checking the accuracy of the approximate solution. Using
this method, the approximate solution can be easily verified by computing the
residuals through straightforward direct substitution.
The primary aim of this study was to employ semi-analytical methods to solve
and analyse the SARS-CoV-2 model. Semi-analytical solutions are derived using
two powerful methods: the Laplace Adomian decomposition method (LADM)
and differential transform method (DTM). These techniques provide highly ac-
curate results with minimal iterations, making them valuable tools for analyzing
the dynamics of the SARS-CoV-2 model. The LADM involves breaking down
the equations into an infinite power series of Adomian polynomials, facilitating
the computation of approximate solutions for the variables of the model. On the
other hand, the DTM utilizes Taylor series expansion to approximate the solu-
tions, streamline the analysis process and enhance the computational efficiency.
This paper is structured as follows: Section 2 provides the mathematical model
for SARS-CoV-2. We solve the system of nonlinear equations through the appli-
cations of the Laplace Adomian decomposition and differential transform meth-
ods in section 3. We show the model’s numerical simulation, tables, graphs and
discussions for controlling the disease in sections 4 and 5. Section 6 outlines the
conclusions of the paper.
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2. Governing system of equation

In this section, we consider the SIR SARS-CoV-2 model proposed by Tong
et al. [19], which is expressed in the form (1). This involves dividing the entire
population N(t) into three distinct classes: Susceptible S(t), Infected I(t), and
Recovered R(t). This division enables us to formulate the ordinary differential
equation (ODE) system using the following equations.

dS

dt
= ∧+ η − χS − bSI

dI

dt
= bSI + γ − (ρ+ χ+ ξ)I

dR

dt
= ξI − χR

(1)

with the initial conditions:

S(0) = p1, I(0) = p2, R(0) = p3 (2)

where ∧ represents the birth rate, η represents the rate of individuals immigrat-
ing to the susceptible class, χ represents the natural death rate, b represents
the contact rate, γ represents the rate of individuals immigrating to the infected
class, ρ denotes the death rate due to coronavirus, ξ denotes the recovery rate.
These parameters play crucial roles in understanding the dynamics and behav-
ior of the SARS-CoV-2 model. The dynamics of system (1) are shown in the
following flow-chart.

Figure 1. Flow chart of SARS-CoV-2 model
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Table 1. Parameters and their values [19]

Parameter Value
ρ 0.02
χ 0.0062
∧ 0.6
b 0.0002
γ 0.00097
η 0.00031
ξ 0.003
p1 222.002105
p2 0.537176
p3 0.482

As (1) lacks an exact solution, we provide an semi-analytical solutions by em-
ploying the LADM and DTM. For computational purposes, a systematic analysis
was conducted using MATLAB and MAPLE.

3. Semi-analytical solutions for the SARS-CoV-2 model

3.1. Laplace Adomian decomposition method (LADM). In this sub-
section, we demonstrate the application of the Laplace Adomian decomposition
method to the nonlinear ordinary differential system (1). To initiate the process,
we apply the Laplace transformation, denoted by L, to both sides of the SARS-
CoV-2 model.

L[
dS

dt
] = L[∧] + L[η]− L[χS]− L[bSI]

L[
dI

dt
] = L[bSI] + L[γ]− L[(ρ+ χ+ ξ)I]

L[
dR

dt
] = L[ξI]− L[χR]

(3)

By using the Laplace transformation properties, we obtain:

wL[S]− S[0] =
(∧+ η)

w
− χL[S]− bL[SI]

wL[I]− I[0] = bL[SI] +
γ

w
− (ρ+ χ+ ξ)L[I]

wL[R]−R[0] = ξL[I]− χL[R]

(4)
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Upon applying the initial conditions (2), we obtain:

L[S] =
p1
w

+
(∧+ η)

w2
− χ

w
L[S]− b

w
L[SI]

L[I] =
p2
w

+
b

w
L[SI] +

γ

w2
− (ρ+ χ+ ξ)

w
L[I]

L[R] =
p3
w

+
ξ

w
L[I]− χ

w
L[R]

(5)

Now, we assume that the solutions for S, I and R can be represented in the
form of an infinite series, and that the nonlinear terms involving SI = A in
the model are decomposed using Adomian polynomials, which are expressed as
follows:

S =

∞∑
n=0

Sn, I =

∞∑
n=0

In, R =

∞∑
n=0

Rn, A =

∞∑
n=0

An (6)

The Adomian polynomials, denoted by An, are defined as follows:

An(t) =
1

n!

dn

dλn
[

∞∑
i=0

λiSi

∞∑
i=0

λiIi]

A0 = S0I0

A1 = S0I1 + S1I0

A2 = S0I2 + S1I1 + S2I0

(7)

Substitute (6) and (7) in (5) to obtain (8):

L[

∞∑
n=0

Sn] =
p1
w

+
(∧+ η)

w2
− χ

w
L[

∞∑
n=0

Sn]−
b

w
L[

∞∑
n=0

An]

L[

∞∑
n=0

In] =
p2
w

+
b

w
L[

∞∑
n=0

An] +
γ

w2
− (ρ+ χ+ ξ)

w
L[

∞∑
n=0

In]

L[

∞∑
n=0

Rn] =
p3
w

+
ξ

w
L[

∞∑
n=0

In]−
χ

w
L[

∞∑
n=0

Rn]

(8)

Taking Laplace inverse of (8) to obtain (9):

∞∑
n=0

Sn = L−1[
p1
w

+
(∧+ η)

w2
− χ

w
L[

∞∑
n=0

Sn]−
b

w
L[

∞∑
n=0

An]]

∞∑
n=0

In = L−1[
p2
w

+
b

w
L[

∞∑
n=0

An] +
γ

w2
− (ρ+ χ+ ξ)

w
L[

∞∑
n=0

In]]

∞∑
n=0

Rn = L−1[
p3
w

+
ξ

w
L[

∞∑
n=0

In]−
χ

w
L[

∞∑
n=0

Rn]]

(9)
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Comparing both sides of the (9), the initial iteration of the Laplace Adomian
decomposition is obtained as:

S0 = L−1[
p1
w

+
(∧+ η)

w2
]

I0 = L−1[
p2
w

+
γ

w2
]

R0 = L−1[
p3
w
]

(10)

(or)

S0 = p1 + (∧+ η)t

I0 = p2 + γt

R0 = p3

(11)

The first iteration of the Laplace Adomian decomposition is derived by compar-
ing both sides of the (9):

S1 = L−1[−χ

w
L[S0]−

b

w
L[A0]]

I1 = L−1[
b

w
L[A0]−

(ρ+ χ+ ξ)

w
L[I0]]

R1 = L−1[
ξ

w
L[I0]−

χ

w
L[R0]]

(12)

(or)

S1 = L−1[−χp1
w2

− (χ(∧+ η) + bp1p2)

w3
− bp1γ + bp2(∧+ η)

w4
− bγ(∧+ η)

w5
]

I1 = L−1[− (ρ+ χ+ ξ)p2
w2

+
bp1p2 − (ρ+ χ+ ξ)γ

w3
+

bp1γ + bp2(∧+ η)

w4

+
bγ(∧+ η)

w5
]

R1 = L−1[
ξp2 − χp3

w2
+

ξγ

w3
]

(13)

(or)

S1 = −χp1t−
(χ(∧+ η) + bp1p2)t

2

2!
− bp1γ + bp2(∧+ η)t3

3!

−bγ(∧+ η)t4

4!

I1 = −(ρ+ χ+ ξ)p2t+
bp1p2 − (ρ+ χ+ ξ)γt2

2!
+

bp1γ + bp2(∧+ η)t3

3!

+
bγ(∧+ η)t4

4!

R1 = (ξp2 − χp3)t+
ξγt2

2!

(14)
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Similarly, the second iteration of the Laplace Adomian decomposition is derived
by comparing both sides of the (9):

S2 = L−1[−χ

w
L[S1]−

b

w
L[A1]]

I2 = L−1[
b

w
L[A1]−

(ρ+ χ+ ξ)

w
L[I1]]

R2 = L−1[
ξ

w
L[I1]−

χ

w
L[R1]]

(15)

(or)

S2 = L−1[
χ2p1
w3

+
(−b(ρ+ χξ)p1p2) + χ2(∧+ η)

w4
+

(∧+ η)2b2γ

w8

+
b2((η + ∧ − γ)p2 + 2p1γ)(∧+ η)

w7
+

(−b2p1p2
2 − b2p2(∧+ η)2)

w5

+
((−p1γ − (∧+ η)(ρ+ χ+ ξ))p2 − p1(ρ+ χ+ ξ))b− χγ(∧+ η))

w5

+
b(2p1p2(∧+ η)b− ((ρ+ ξ) ∧+p1

2 + η(ρ+ ξ)))γ

w6
]

(16)

I2 = L−1[
(b2p1p2

2 + (−p1(ξ + ρ− p2)γ + χ(∧+ η)p2 + p2)b

w5

+
p1(ρ+ χ+ ξ)b

w5
+

b2p2(∧+ η)2 + χγ(∧+ η))

w5
− (∧+ η)2b2γ

w8

+
(ρ+ χ+ ξ)2p2

w3
+

bχp1p2 + (ρ+ χ+ ξ)2γ

w4
− b(2p2(∧+ η)b− p1γ)p1

w6

− (−b2((2p1 − p2)γ + p2(∧+ η))(∧+ η))

w7
]

R2 = L−1[
bp2p1ξ − ξ(ρ+ χ+ ξ)γ − χγξ

w4
+

ξp1γb+ ξ(∧+ η)p2b

w5

+
ξ(∧+ η)γb

w6
− (ξ(ρ+ χ+ ξ)p2 + χξp2 − χ2p3

w3
]

(17)

(or)

S2 =
χ2p1t

2

2!
+

((−b(ρ+ χξ)p1p2) + χ2(∧+ η))t3

3!
+

((∧+ η)2b2γ)t7

7!

+
(b2((η + ∧ − γ)p2 + 2p1γ)(∧+ η))t6

6!
+

((−b2p1p2
2 − b2p2(∧+ η)2)t4)

4!

+
(((−p1γ − (∧+ η)(ρ+ χ+ ξ))p2 − p1(ρ+ χ+ ξ))b− χγ(∧+ η))t4)

4!

+
(b(2p1p2(∧+ η)b− ((ρ+ ξ) ∧+p1

2 + η(ρ+ ξ)))γ)t5

5!

(18)
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I2 =
(b2p1p2

2 + (−p1(ξ + ρ− p2)γ + χ(∧+ η)p2 + p2)b)t
4

4!

+
p1(ρ+ χ+ ξ)bt4

4!
+

(b2p2(∧+ η)2 + χγ(∧+ η)))t4

4!
− (∧+ η)2b2γt7

7!

+
(bdp1p2 + (ρ+ χ+ ξ)2γ)t3

3!
− (b(2p2(∧+ η)b− p1γ)p1)t

5

5!

+
(ρ+ χ+ ξ)2p2t

2

2!
− (−b2((2p1 − p2)γ + p2(∧+ η))(∧+ η))t6

6!

R2 =
(bp2p1ξ − ξ(ρ+ χ+ ξ)γ − χγξ)t3

3!
+

(ξp1γb+ ξ(∧+ η)p2b)t
4

4!

+
ξ(∧+ η)γbt5

5!
− (ξ(ρ+ χ+ ξ)p2 + χξp2 − χ2p3)t

2

2!

(19)

Subsequently, the remaining terms are computed using a similar approach. By
employing these calculated values, we can approximate the solutions to the above
systems in the form of an infinite series as:

S(t) = S0 + S1 + S2 + ...

I(t) = I0 + I1 + I2 + ...

R(t) = R0 +R1 +R2 + ...

By using the initial conditions and the provided parameter values in Table 1, we
get:

S(t) = 222.002105− 0.776103051t− 0.009519500822t2

−0.0001301552435t3 − 0.00005532499957t4 − 0.00007962971005t5

+2.510080030× 10−11t6 + 2.774293121× 10−15t7 + ...

I(t) = 0.537176 + 0.00913530136t+ 0.0002148468723t2

+0.00004271085092t3 + 0.00005522191855t4 + 0.00007962968773t5

−2.510080030× 10−11t6 − 2.774293121× 10−15t7 + ...

R(t) = 0.482− 0.001376872t− 0.00001780500560t2

+0.00001190825128t3 + 1.344535416× 10−8t4

+2.911503501× 10−12t5 + ...

(20)

3.2. Differential transform method (DTM):. In this sub-section, we demon-
strate the application of the differential transform method to the nonlinear ordi-
nary differential system (1). The fundamental definitions and properties of the
DTM are provided below.
Definition 1: Given an arbitrary funstion u(x), then u(x) can be expanded in
a Taylor series about the point x = 0 as

u(x) =

∞∑
n=0

xk

k!
[
dku(t)

dxk
]
t=0
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Definition 2: The differential transform U(k) of a function u(t) is defined as
follows:

U(k) =
1

k!
[
dku(t)

dxk
]
t=0

Definition 3: The inverse differential transform u(t) is given as:

u(t) =

∞∑
n=0

Uktk

Table 2. Properties of the DTM

Original functions Transformed functions

u(x) = dg(x)
dx U(k) = (k + 1)G(k + 1)

u(x) = 1 U(k) = δ(k), where δ is the kronecker delta

u(x) = g(x)h(x) U(k) =
∑k

j=0 G(j)H(k − j)

By using the definitions and properties of the differential transform method,
the (1) can be written as:

S(k + 1) =
1

k + 1
[(∧+ η)δ(k)− χS(k)− b

k∑
j=0

S(j)I(k − j)]

I(k + 1) =
1

k + 1
[b

k∑
j=0

S(j)I(k − j) + γδ(k)− (ρ+ χ+ ξ)I(k)]

R(k + 1) =
1

k + 1
[ξI(k)− χR(k)]

(21)

subject to the initial conitions:

S(0) = p1, I(0) = p2, R(0) = p3 (22)

The first iteration of the DTM is derived by setting k = 0 in (19).

S(1) = (∧+ η)δ(0)− χS(0)− bS(0)I(0)

I(1) = bS(0)I(0) + γδ(0)− (ρ+ χ+ ξ)I(0)

R(1) = ξI(0)− χR(0)

(23)

(or)

S(1) = ∧+ η − χp1 − bp1p2

I(1) = bp1p2 + γ − (ρ+ χ+ ξ)p2

R(1) = ξp2 − χp3

(24)
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The second iteration of the DTM is derived by setting k = 1 in (19).

S(2) =
1

2
[(∧+ η)δ(1)− χS(1)− b(S(1)I(0) + S(0)I(1))]

I(2) =
1

2
[b(S(1)I(0) + S(0)I(1)) + γδ(1)− (ρ+ χ+ ξ)I(1)]

R(2) =
1

2
[ξI(1)− χR(1)]

(25)

(or)

S(2) =
1

2
[−χ(∧+ η − χp1 − bp1p2)− b(p1(bp1p2 + γ − (ρ+ χ+ ξ)p2)

+(∧+ η − δp1 − bp1p2)p2)]

I(2) =
1

2
[b(p1(bp1p2 + γ − (ρ+ χ+ ξ)p2) + (∧+ η − χp1 − bp1p2)p2)

−(ρ+ χ+ ξ)(bp1p2 + γ − (ρ+ χ+ ξ)p2)]

R(2) =
1

2
[ξ(bp1p2 + γ − (ρ+ χ+ ξ)p2)− χ(ξp2 − χp3)]

(26)

Subsequently, the remaining terms are computed using a similar approach. By
employing these calculated values, we can approximate the solutions to the above
systems in the form of an infinite series as:

S(t) =

∞∑
n=0

S(k)tk = S(0) + S(1)t+ S(2)t2 + ...

I(t) =

∞∑
n=0

I(k)tk = I(0) + I(1)t+ I(2)t2 + ...

R(t) =

∞∑
n=0

R(k)tk = R(0) +R(1)t+R(2)t2 + ...

By using the initial conditions and the provided parameter values in Table 1, we
get:

S(t) = 222.002105− 0.7999538916t+ 0.002320023054t2 + ...

I(t) = 0.537176 + 0.00913530136t− 0.00001056517630t2 + ...

R(t) = 0.482− 0.001376872t+ 0.00001797125524t2 + ...

(27)

4. Numerical Simulation

The numerical solution for the first-order nonlinear differential system (1) was
obtained using a hybrid approach, the ode45 solver and MATLAB software (Ap-
pendix). To assess the accuracy of the obtained solution, a comparison was made
between the numerical results and the analytical solutions obtained through the
Laplace Adomian decomposition and differential transform methods. Graphical
illustrations of the analytical concentrations S, I, and R are presented in Figures
2, 3, 4, 5 alongs with their corresponding numerical outcomes, encompassing
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a comprehensive range of parameter values. A comparison between these two
datasets demonstrated a significant level of concordance between the approxi-
mated analytical solutions and numerical results. The accuracy of our analytical
expressions for the concentrations S, I, and R, based on the different parameter
values, is presented in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11. Both the analytical
results emphasize a good agreement with the outcomes obtained from the nu-
merical simulations and the overall error between LADM and DTM with the
numerical simulation does not exceed 0.06% and 0.007% respectively.
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Figure 2. Comparison of semi-analytical expressions
obtained by LADM and DTM with numerical simulation for

the parameters provided in Table 1.
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Figure 3. Comparison of analytical and numerical solutions
for the concentration S(t), when (a) ∧ = 0.2 to 0.6 and other
parameters χ, b, γ, η, ξ, ρ are fixed, (b) η = 0.00031 to 0.01 and

other parameters χ, b, γ,∧, ξ, ρ are fixed.

Table 3. Comparison between the Laplace Adomian
Decomposition Method (LADM) and Differential Transform

Method (DTM) with the numerical outcomes for the concentration
profile, Susceptible S(t)

Susceptible class S(t)

t Num. LADM DTM
LADM
Error%

DTM
Error%

0 222.0021 222.0021 222.0021 0.0000 0.0000
0.1 221.9221 221.9243 221.9221 0.0009 0.0000
0.2 221.8421 221.8465 221.8422 0.0019 0.0000
0.3 221.7620 221.7684 221.7623 0.0028 0.0001
0.4 221.6817 221.6901 221.6824 0.0037 0.0003
0.5 221.6012 221.6116 221.6027 0.0046 0.0006
0.6 221.5204 221.5329 221.5229 0.0056 0.0011
0.7 221.4393 221.4540 221.4432 0.0066 0.0017
0.8 221.3577 221.3750 221.3636 0.0078 0.0026
0.9 221.2756 221.2952 221.2840 0.0088 0.0037
1 221.1929 221.2162 221.2044 0.0105 0.0051
Average Error % 0.0048 0.0013
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Figure 4. Comparison of analytical and numerical solutions
for the concentration I(t), when (a) b = 0.0002 to 0.0009 and
other parameters χ,∧, γ, η, ξ, ρ are fixed, (b) γ = 0.00097 to

0.097 and other parameters χ, b, η,∧, ξ, ρ are fixed, (c)
ρ = 0.002 to 0.2 and other parameters χ, b, γ,∧, ξ, η are fixed.

5. Discussion

The Laplace Adomian decomposition method (LADM) and differential trans-
form method (DTM) was used to solve the nonlinear equations governing the
concentrations of susceptible, infected, and recovered individuals in SARS-CoV-2
model. Comparative analyses were conducted among LADM, DTM, and numer-
ical simulations under varying parameter values in the model. The results are
effectively presented through graphical figures and informative tables, demon-
strating the efficacy and accuracy of both the LADM and DTM. Upon analyzing
the figures and tables, it becomes evident that within the designated time inter-
val, the DTM consistently provides a superior approximation compared to the
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Figure 5. Comparison of analytical and numerical solutions
for the concentration R(t), when ξ = 0.003 to 0.3 and other

parameters χ, b, γ, η,∧, ρ are fixed.

(a) (b)

Figure 6. Susceptible SARS-CoV-2 model using different
values of the parameters ∧ and η.

LADM with the simulations. Importantly, as the numerical values of the SARS-
CoV-2 model increased, both methods converge toward the numerical simulation
of the model. However, DTM effectively captures this behavior, even with a lim-
ited time interval.
Figure 2.a depicts the susceptible class S(t), utilizing the provided parameters
in Table 1. The susceptible population that are in contact with the disease are
exposed to the infected population. The impact of these parameters becomes
evident as the susceptible class exhibited a decreasing trend. Table 3 provides
a comparison between the numerical and analytical results for the susceptible
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(a) (b)

(c)

Figure 7. Infected SARS-CoV-2 model using different values
of the parameters b, γ and ρ.

Figure 8. Recovered SARS-CoV-2 model using different
values of the parameter ξ.
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Figure 9. Impact of the parameters ξ, b and γ on the
Infected and Recovered classes, when (a) ξ = 0.003,
b = 0.2× 10−3 and γ = 0.97× 10−3, (b) ξ = 0.03,

b = 0.2× 10−4 and γ = 0.97× 10−4, (c) ξ = 0.3, b = 0.2× 10−5

and γ = 0.97× 10−5.

class S(t). Figure 2.b depicts the infected class I(t). The impact of these pa-
rameters becomes evident as the infected class exhibited an increasing trend, as
the number of individuals immigrating from susceptible to infection class. Table
4 provides a comparison between the numerical and analytical results for the
infected class I(t). Figure 2.c depicts the recovered class R(t). The impact of
these parameters is evident as the recovered class shows a decreasing trend, this
is because infected class may not have better progression rates. Table 5 provides
a comparison between the numerical and analytical results for the recovered class
R(t).
In Figure 3.a, when fixing the parameters χ, b, γ, η, ξ, ρ and increasing ∧, the
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Table 4. Comparison between the Laplace Adomian
Decomposition Method (LADM) and Differential Transform

Method (DTM) with the numerical outcomes for the concentration
profile, Infected I(t)

Infected class I(t)

t Num. LADM DTM
LADM
Error%

DTM
Error%

0 0.5372 0.5371 0.5371 0.0186 0.0186
0.1 0.5381 0.5380 0.5380 0.0185 0.0185
0.2 0.5390 0.5390 0.5390 0.0000 0.0000
0.3 0.5399 0.5399 0.5399 0.0000 0.0000
0.4 0.5408 0.5408 0.5408 0.0000 0.0000
0.5 0.5417 0.5418 0.5417 0.0184 0.0000
0.6 0.5426 0.5427 0.5426 0.0184 0.0000
0.7 0.5435 0.5437 0.5435 0.0210 0.0000
0.8 0.5445 0.5446 0.5444 0.0215 0.0183
0.9 0.5454 0.5456 0.5453 0.0216 0.0183
1 0.5463 0.5467 0.5463 0.0327 0.0000
Average Error % 0.0135 0.0067

Table 5. Comparison between the Laplace Adomian
Decomposition Method (LADM) and Differential Transform

Method (DTM) with the numerical outcomes for the concentration
profile, Recovered R(t)

Recovered class R(t)

t Num. LADM DTM
LADM
Error%

DTM
Error%

0 0.4820 0.4820 0.4820 0.0000 0.0000
0.1 0.4819 0.4818 0.4818 0.0207 0.0207
0.2 0.4817 0.4817 0.4817 0.0000 0.0000
0.3 0.4815 0.4815 0.4815 0.0000 0.0000
0.4 0.4814 0.4814 0.4814 0.0000 0.0000
0.5 0.4813 0.4813 0.4813 0.0000 0.0000
0.6 0.4811 0.4811 0.4811 0.0000 0.0000
0.7 0.4810 0.4810 0.4810 0.0000 0.0000
0.8 0.4809 0.4808 0.4809 0.0207 0.0000
0.9 0.4807 0.4807 0.4807 0.0000 0.0000
1 0.4806 0.4806 0.4806 0.0000 0.0000
Average Error % 0.0037 0.0018

susceptible class also increases. In Figure 3.b, when η increases and other pa-
rameters are fixed, there is no variation in the susceptible class. In Figure 4.a,
when fixing the parameters χ,∧, γ, η, ξ, ρ and increasing b, the infected class also
increases. In Figure 4.b, when γ increases and other parameters are fixed, the
infected class increases. In Figure 4.c, when ρ increases and other parameters
are fixed, the infected class decreases. In Figure 5, when fixing the parameters
χ, b, γ, η,∧, ρ and increasing ξ, the recovered class also increases.
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Table 6. Results of birth rate ∧ versus Susceptible class S(t) at
t = 0.5

S. No ∧ Num. LADM DTM
LADM
Error%

DTM
Error%

1 0.2 221.403 221.412 221.403 0.0040 0.0000
2 0.4 221.503 221.512 221.503 0.0040 0.0000
3 0.6 221.600 221.612 221.603 0.0054 0.0013

Average Error % 0.0044 0.0003

Table 7. Results of rate of individuals immigrating to the
susceptible class η versus Susceptible class S(t) at t = 0.5

S. No η Num. LADM DTM
LADM
Error%

DTM
Error%

1 0.01 221.608 221.616 221.608 0.0036 0.0000
2 0.005 221.605 221.614 221.605 0.0040 0.0000
3 0.0003 221.600 221.612 221.603 0.0054 0.0013

Average Error % 0.0043 0.0003

Table 8. Results of rate of individuals immigrating to the
infected class γ versus Infected class I(t) at t = 0.5

S. No γ Num. LADM DTM
LADM
Error%

DTM
Error%

1 0.097 0.590 0.590 0.590 0.0000 0.0000
2 0.0097 0.546 0.546 0.546 0.0000 0.0000
3 0.00097 0.542 0.542 0.542 0.0000 0.0000

Average Error % 0.0000 0.0000

Table 9. Results of contact rate b versus Infected class I(t) at
t = 0.5

S. No b Num. LADM DTM
LADM
Error%

DTM
Error%

1 0.0002 0.542 0.542 0.542 0.0000 0.0000
2 0.0005 0.560 0.560 0.560 0.0000 0.0000
3 0.0009 0.585 0.584 0.585 0.1709 0.0000

Average Error % 0.0427 0.0000

Table 10. Results of death rate due to corona ρ versus Infected
class I(t) at t = 0.5

S. No ρ Num. LADM DTM
LADM
Error%

DTM
Error%

1 0.002 0.547 0.547 0.547 0.0000 0.0000
2 0.02 0.560 0.560 0.560 0.0000 0.0000
3 0.2 0.495 0.496 0.495 0.2020 0.0000

Average Error % 0.0505 0.0000
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Table 11. Results of recovery rate ξ versus Recovered class R(t)
at t = 0.5

S. No ξ Num. LADM DTM
LADM
Error%

DTM
Error%

1 0.003 0.481 0.481 0.481 0.0000 0.0000
2 0.09 0.504 0.504 0.504 0.0000 0.0000
3 0.3 0.556 0.555 0.556 0.1798 0.0000

Average Error % 0.0599 0.0000

In Figures 6.a - 6.b, the parameters ∧ and η against time t increases as the
susceptible class also increases. Tables 6 and 7 provides the results of ∧ and η
versus susceptible class at time t = 0.5 respectively. In Figures 7.a - 7.b, the
parameters b and γ against time t increases as the infected class also increases,
but in Figure 7.c, the parameter ρ against time t increases as the infected class
decreases. Tables 8, 9 and 10 provides the results of b, γ and ρ versus infected
class at time t = 0.5 respectively. In Figure 8, the parameter ξ against time t
increases as the recovered class also increases. Table 11 provides the results of ξ
versus recovered class at time t = 0.5.
The recovery rate ξ, contact rate b, and the rate of individuals immigrating to
the infected class γ, plays a crucial role in overcoming infection. In Figure 9.a,
we illustrate the initial state solution for the infected and recovered individuals.
Subsequently, Figures 9.b - 9.c depicts the impact of varying parameters of ξ, b
and γ. When increasing the parameter ξ and reducing the parameters b and γ
simultaneously, we observe an improved recovery population.

6. Conclusion

In this study, we derived an semi-analytical solutions for the SIR framework
of SARS-CoV-2 model using both the Laplace Adomian decomposition method
and the differential transform approach. A comprehensive comparison between
the analytical and numerical results was conducted, which yields more favorable
results. The findings revealed distinct behaviors among the three derivative
classes when applying the LADM, DTM, and the numerical approach. The
Tables 3-11 and Figures 2-5 demonstrate the effectiveness of LADM and DTM in
solving nonlinear equations. DTM manages to capture this behaviour quite well,
considering the short time interval. Our focus was on analyzing the parameters
ξ, b and γ to reduce the infected class I(t) and to increase the recovered class
R(t). Initially, the infected class reaches peak as the impact of the parameters,
yet the recovered class experiences growth in the SARS-CoV-2 model over time
t.
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7. Appendix

MATLAB program for numerical simulation (1) with initial conditions (2)
function SARS
options=odeset (’RelTol’,1e-6,’Stats’,’on’);
%initial conditions
Xo=[222.002105; 0.537176; 0.482];
tspan=[0,1];
tic
[t,X] = ode45(@TestFunction, tspan,Xo, options);
%——————————————————————
figure
hold on
plot(t, X(:,1),’-’)
plot(t, X(:,2),’-’)
plot(t, X(:,3),’-’)
legend(’x1’,’x2’,’x3’)
ylabel(’x’)
xlabel(’t’)
return
%——————————————————————
function [dx dt]= TestFunction(t,x)
wedge=0.6; eta=0.00031; b=0.0002; gamma=0.00097; xi=0.003; chi=0.0062;
rho=0.02;
dx dt(1)=wedge+eta-chi*x(1)-b*x(1)*x(2);
dx dt(2)=b*x(1)*x(2)+gamma-(rho+chi+xi)*x(2);
dx dt(3)=xi*x(2)-chi*x(3);
dx dt=dx dt’;
return
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