• Title/Summary/Keyword: admixture content

Search Result 213, Processing Time 0.028 seconds

Super Retarding Agent Affecting Setting Time of Concrete Using Mineral Admixture (혼화재를 사용한 콘크리트의 응결 시간에 미치는 초지연제의 영향)

  • Jeon Chung Keun;Kim Jong;Han Min Cheol;Shin Dong An;Oh Sean Kyo;Han Chean Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.643-646
    • /
    • 2005
  • This paper reports the influence of super retarding agent(SRA) on the setting time of concrete incorporating mineral admixture including fly ash(FA), expansive additive(EA), silica fume(SF), blast furnace slag(BS) and blast furnace slag along with fly ash(BS+FA). An increase in SRA resulted in retarding the setting time of control concrete, while the use of mineral admixture led to a delay of setting time markedly, compared with that of control concrete under no SRA content. Meanwhile, An increase in SRA in concrete with mineral admixture exhibited comparable setting delay with control concrete. Furthermore, in case of the use of BS and SF, acceleration of setting time was observed with increase of SRA content. It is considered that proper dosage of SRA of concrete with SF and BS to secure similar setting delay with control concrete require rather larger than that of control concrete. Accordingly, For concrete with mineral admixture, in order to decide the proper dosage of SRA, application of correction factors is needed.

  • PDF

A Study on the Quality Characteristics of Concrete Using Super Plasticizer (고성능 감수제를 사용한 콘크리트의 품질 특성에 관한 연구)

  • 배수호;윤상대;정영수;김영의
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.135-142
    • /
    • 1994
  • The quality characteristics of concrete using super plasticizer in dornestlc rnarket are evaluat ed in order to put to practical use of high performance concrete with high mobility. high strength ard high durability. For this purpose, rune kmds of super plasticizer are compared and analyzed for the slump, air content. unit weight, water reducing percent and ratios of compressive strength wth admixture content. As a result, the optimum quantity of admixture content were obtained for ordinary and high strength concrete using super plasticizer.

A Study on the Capability to Use with Admixture Material of Paper Sludge Ash (제지 슬러지 소각회의 시멘트 혼화 재료로서의 이용 가능성에 관한 연구)

  • 김재진;문경주;노병남;문성필;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.89-92
    • /
    • 1999
  • The purpose of this study is to evaluate the capability to use with cement admixture materials because Paper Sludge Ash consists of Si, Ca and Al which are chief content in Pozzolan. For the derivation of Pozzolanic reaction in Paper Sludge Ash, it is measured compressive strength on cement mortar which is replaced mixing of Paper Sludge Ash and inorganic admixture ; ie, gypsum, lime and slaked lime, regularly. In the result of test, the strength decrease remarkably when cement is only replaced with Paper Sludge Ash, but the strength is almost equal when cement is replaced with Paper Sludge Ash is mixed with inorganic admixture material in proportions of 5~15%. Consequently, It is possible to use Paper Sluge Ash with admixture materials of cement.

  • PDF

An Experimental Study on the Strength Properties of Concrete for Curing Method at Early Age and kinds of Admixture in Winter (동절기 초기양생방법 및 혼화제 종류에 따른 콘크리트의 강도발현특성에 관한 실험적 연구)

  • 최성우;이민호;반성수;최봉주;유득현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.183-188
    • /
    • 2002
  • When Concrete work during winter is placed, it has anxiety that concrete freeze at low temperature. As concrete's freezing cause reduction of durability, it is necessary for mixing to pay attention to Air content and W/C ratios. Accordingly, in this study, we set up three series and evaluate a frost-resistance of concrete with admixture, like fly-ash and blast-furnace slag, for early curing method and types of chemical admixture..The study is composed as; I series : Analysis for early curing method and types of chemical admixture in laboratory II series : Analysis for early curing method and types of chemical admixture in batcher plant and measured concrete' temperature. The result of this study, it was more effective the use of super-plasticizers than air entraining agent.

  • PDF

Evaluation and Application of Anti-Corrosion Inhibitor for the Corrosion Protection of Reinforcing Bars (철근방식을 위한 방청제의 성능 평가에 관한 연구)

  • 김상철;강승희;이두재
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.248-253
    • /
    • 1997
  • The study was carried out to evaluate material characteristics and environmental effects of anti-corrosion inhibitor which is known to be very easy to use, since the admixture is added during concrete mixing. Specimens were fabricate with 6 different dosages of anti-corrosion inhibitor and cured in the autoclave chamber with different number of cycles. As a result of measuring corrosion of reinforcing bars embedded in concrete, it was found that even small amount of admixture application can prevent reinforcing bars from corrosion and the efficiency is gradually decreased with increase of the number of autoclave cycles and of percentage of chloride content. In addition, the admixture will not affect material characteristics such as compressive strength and air content.

  • PDF

A Study on Durability Improvement of Concrete Using Glycol Ether Chemical Admixture (글리콜에테르계 혼화제가 콘크리트의 내구성 향상에 미치는 영향에 관한 연구)

  • Kim, Kwang-Ki;Song, In-Myung;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.117-124
    • /
    • 2007
  • Focused on the material-related aspect for enhancing the durability of concrete, the present study analyzed the effect of glycol ether admixture, which is a chemical admixture that can compact the structure of concrete by entraining air inside the concrete, on the basic physical properties and durability characteristic of the concrete. In analyzing the results of experiment, we examined the basic physical properties and durability characteristic of concrete according to addition rate based on OPC and selected the optimal addition rate. In addition, with the optimal addition rate, we added glycol ether admixture to concrete, which contained fly ash used as binder and high-performance water reducing agent for reducing the unit quantity, and examined changes in the characteristics of the concrete. According to the result, the optimal addition rate of glycol ether admixture was 3% of the unit quantity of cement, and the addition of binder and chemical admixture did not have a significant effect on unhardened concrete but reduced the air content. In addition, concrete showed resistance performance of around 30% to carbonation and around 40% to drying shrinkage. In addition, as for resistance to freezing and thawing, the relative dynamic modulus of elasticity was over around 85% through atmospheric curing. These performances prove the effect.

Material Properties of Concrete Specimens with Electric Arc Furnace Dust as Admixture (전기로제강분진(EAF Dust)을 혼화재로 배합한 콘크리트 공시체의 재료특성)

  • 김장호;김석호;김성훈;김동완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.669-674
    • /
    • 2001
  • Electric Arc Furnace Dust (EAF Dust) Is residual dust produced during the manufacturing of metal products from heavily heated electric arc furnace. Many researches have focused on recycling and reusing EAF Dust for industrial and construction purposes. However, most of these researches were aimed at obtaining useful heavy metal powders by treating toxic metallic materials in EAF Dust. Also, few researches dealt with using EAF Dust as admixture in concrete mixture (i.e., slag dust). In this study, EAF Dust is used as admixture in concrete mixture content considering economical feasibility and construction applicability. The concrete specimens mixed with EAF Dust is then tested in compression and tension to study its strength and ductility as well as its failure mechanism. The compression and tension (by split cylinder test) test results are compared to the results from the specimens without EAF Dust to understand the chemical stability and mechanical characteristic of concrete specimens with EAF Dust. For the experiment, 6 types of admixture added concrete were studied: ⑴Combination of EAF Dust and blast-furnace slag in 1 to 1 ratio, ⑵Combination of EAF Dust and blast-furnace slag in 1 to 2 ratio, ⑶EAF Dust only, ⑷blast-furnace slag only, ⑸fly ash only, and ⑹no admixture. The experimental results show that the strength of EAF Dust added specimen has lower early age strength but higher 28 day strength when compared to other specimens. Also, the Elastic Modulus of EAF Dust is higher(28 days) than other specimens. The study results prove that EAF Dust can be used as an effective admixture in concrete for specific usages.

  • PDF

A Study on Influencing Factors of Unit-Water Measurement method according to Electrostatic capacity (정전용량에 따른 단위수량 측정기법의 영향인자에 대한 실험적 연구)

  • We, Joon-Woo;Lee, Young-Jin;Kim, Jeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.232-233
    • /
    • 2013
  • The unit-water content in fresh concrete determines consistency, and play an important role in condensing the structure of concrete and enhancing the durability of concrete. The capacitance measurement method measure quickly unit-water content and is the best way to apply to construction site. In this study, the unit-water content of capacitance measurement method is estimated according to types and replacemment ratio of admixture. and the field application of capacitance measurement method is reviewed.

  • PDF

Effective Use of Aggregate Fines (석분의 효과적인 이용에 관한 연구)

  • 백신원
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.65-72
    • /
    • 2001
  • Portland cement concrete is made with coarse aggregate, fine aggregate, portland cement, water and, in some cases, selected chemical admixture such as air-entraining agents, water reducer, superplasticizer, and so on, and mineral admixture such as fly ash, silica fume, slags, etc. Typically, in the concrete, the coarse aggregate and fine aggregate will occupy approximately 80 percent of the total volume of the finished mixture. Therefore, the coarse and fine aggregates affect to the properties of the portland cement concrete. As the deposits of natural sands have slowly been depleted, it has become necessary and economical to produce crushed sand(manufactured fine aggregate). It is reported that crushed sand differs from natural sands in gradation, particle shape and texture, and that the content of micro fines in the crushed sand affect to the quality of the portland cement concrete. Therefore, the purpose of this paper is to investigate the characteristics of fresh and hardened concrete with higher micro fines. This study provides a firm data to apply crushed sand with higher micro fines.

  • PDF

Evaluation of Mechanical Properties and Crack Resistant Performance in Concrete with Steel Fiber Reinforcement and CSA Expansive Admixture (CSA 팽창재를 혼입한 강섬유 보강 콘크리트의 역학적 성능 및 균열 저항성능 평가)

  • Choi, Se-Jin;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2014
  • In order to prevent brittle failure of concrete, steel fiber reinforcement is effective composite material. However ductility of steel fiber reinforced concrete may be limited due to shrinkage caused by large content of cement binder. Chemical prestressing for steel fiber reinforcement in cement matrix can be induced through expansive admixture and this can increase reinforcing effect of steel fiber. In this study, mechanical performances in concrete with CSA (Calcium sulfoaluminate) expansive admixture and steel fiber reinforcement are evaluated. For this work, steel fiber reinforcement of 1 and 2% of volume ratio and CSA expansive admixture of 10% weight ratio of cement are added in concrete. Mechanical and fracture properties are evaluated in concrete with steel fiber reinforcement and CSA expansive admixture. CSA concrete with steel fiber reinforcement shows increase in tensile strength, initial cracking load, and ductility performance like enlarged fracture energy after cracking. With appropriate using expansive admixture and optimum ratio of steel fiber reinforcement, their interactive action can effectively improve brittle behavior in concrete.