• Title/Summary/Keyword: admissible polynomials

Search Result 13, Processing Time 0.024 seconds

CENTRALLY SYMMETRIC ORTHOGONAL POLYNOMIALS IN TWO VARIABLES

  • Lee, Jeong-Keun
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.645-653
    • /
    • 1997
  • We study centrally symmetric orthogonal polynomials satisfying an admissible partial differential equation of the form $$ Au_{xx} + 2Bu_{xy} + Cu_{yy} + Du_x + Eu_y = \lambda_n y, $$ where $A, B, \cdots, E$ are polynomials independent of n and $\lambda_n$ is the eignevalue parameter depending on n. We show that they are either the product of Hermite polymials or the circle polynomials up to a complex linear change of variables. Also we give some properties of them.

  • PDF

Free Vibration of EllllIipticall and Circular Plates (타원형 및 원형 평판의 자유 진동)

  • 김찬수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1485-1492
    • /
    • 1992
  • While the vibration of circular plates were considered by many researchers, rather less attention is given to elliptical plates. In the present paper, the Rayleigh-Ritz mothod is used to obtain an eigenvalue equation for the free flexural vibration of thin elliptical plates having the classical free, simply suported or clmped boundary condition. Circular plates are included as a special case of the elliptical plates. Products of simple polynomials are used as the admissible functions and a recurrence relationship facilitates the evaluation of the necessary integrals. The analysis is developed for rectilinear orthotropic plates but the numerical results are given for isotropic plates with various aspect ratios.

Flexural Vibration Analysis of Mindlin Rectangular Plates Having V-notches or Sharp Cracks (V노치 또는 예리한 균열을 가지는 Mindlin 직사각형 평판의 휨 진동해석)

  • Kim, Joo-Woo;Jung, Eui-Young;Kim, Seung-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.35-42
    • /
    • 2003
  • This paper provides the first known flexural vibration data for thick (Mindlin) rectangular plates having V-notches. The V-notch has bending moment and shear force singularities at its sharp corner due to the transverse vibratory bending motion. Based upon Mindlin plate theory, in which transverse shear deformation and rotary inertia effects are considered, the Ritz procedure is employed with a hybrid set of admissible functions assumed for the rotational and transverse vibratory displacements. This set includes: (1) a mathematically complete set of admissible algebraic-trigonometric polynomials which guarantee convergence to exact frequencies as sufficient terms are retained; and (2) an admissible set of Mindlin corner functions which account for the bending moment and shear force singularities at the sharp corner of the V-notch. Extensive convergence studies demonstrate the necessity of adding the Mindlin corner functions to achieve accurate frequencies for rectangular plates having sharp V-notches.

  • PDF

VIBRATION ANALYSIS OF MINDLIN SECTORIAL PLATES (MINDLN 부채꼴형 평판의 진동해석)

  • 김주우;한봉구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.412-417
    • /
    • 1998
  • This paper provides accurate flexural vibration solutions for thick (Mindlin) sectorial plates. A Ritz method is employed which incorporates a complete set of admissible algebraic-trigonometric polynomials in conjunction with an admissible set of Mindlin “corner functions". These corner functions model the singular vibratory moments and shear forces, which simultaneously exist at the vertex of corner angle exceeding 180$^{\circ}$. The first set guarantees convergence to the exact frequencies as sufficient terms are taken. The second set represents the corner singularities, and accelerates convergence substantially. Numerical results are obtained for completely free sectorial plates. Accurate frequencies are presented for a wide spectrum of vertex angles (90$^{\circ}$, 180$^{\circ}$, 270$^{\circ}$, 300$^{\circ}$, 330$^{\circ}$, 350$^{\circ}$, 35 5$^{\circ}$,and 359$^{\circ}$)and thickness ratios.tios.

  • PDF

Vibration analysis of free-fixed hyperbolic cooling tower shells

  • Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.785-799
    • /
    • 2015
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies of hyperboloidal shells free at the top edge and clamped at the bottom edge like a hyperboloidal cooling tower by the Ritz method based upon the circular cylindrical coordinate system instead of related 3-D shell coordinates which are normal and tangent to the shell midsurface. The Legendre polynomials are used as admissible displacements. Convergence to four-digit exactitude is demonstrated. Natural frequencies from the present 3-D analysis are also compared with those of straight beams with circular cross section, complete (not truncated) conical shells, and circular cylindrical shells as special cases of hyperboloidal shells from the classical beam theory, 2-D thin shell theory, and other 3-D methods.

INTEGRAL BASES OVER p-ADIC FIELDS

  • Zaharescu, Alexandru
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.509-520
    • /
    • 2003
  • Let p be a prime number, $Q_{p}$ the field of p-adic numbers, K a finite extension of $Q_{p}$, $\bar{K}}$ a fixed algebraic closure of K and $C_{p}$ the completion of K with respect to the p-adic valuation. Let E be a closed subfield of $C_{p}$, containing K. Given elements $t_1$...,$t_{r}$ $\in$ E for which the field K($t_1$...,$t_{r}$) is dense in E, we construct integral bases of E over K.

Free Vibration of a Thin Plate with Small Deflections by Semi-Analytical Approach (반해석적 방법에 의한 작은 변위를 가지는 얇은판의 자유진동해석)

  • 최덕기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.1967-1973
    • /
    • 1994
  • The free vibration of a thin plate with three different boundary conditions is discussed in this paper. A semi-analytical approach to the plate problems has been exploited using computer algebra system(CAS). The approximate solutions are assumed as algebraic polynomials that satisfy the appropriate boundary conditions. In order to solve problems, Galerkin method is used, which is known as an ineffective tool for practical engineering problems, being involved with a large number of multiple integration and differentiation. All the admissible functions used in this paper are generated automatically by CAS otherwise a tedious algebraic manipulations should be done by hand. One, six and fifteen-term solutions in terms of frequency parameters are presented and compared with exact solutions. Even using one-term solution, the comparison with existing data shows good agreement and accuracy of the present method.

Flexural Vibrations of Rectangular Plates Having V-notches or Sharp Cracks (V노치 또는 예리한 균열을 가지는 직사각형 평판의 굽힘 진동)

  • 정희영;정의영;김주우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.336-343
    • /
    • 2004
  • This paper reports the first known free vibration data for thin rectangular plates with V-notches. The classical Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. These sets include (1) mathematically complete algebraic-trigonometric polynomials which guarantee convergence to exact frequencies as sufficient terms are retained, and (2) corner functions which account for the bending moment singularities at the sharp reentrant corner of the Y-notch. Extensive convergence studies summarized herein confirm that the corner functions substantially enhance the convergence and accuracy of nondirectional frequencies for rectangular plates having the V-notch. In this paper, accurate frequencies and normalized contours of vibratory transverse displacement are presented for various notched plates, so that the effect of corner stress singularities may be understood.

Flexural Vibration of Clamped and Simplv Supported Sectorial Plates with Combinations of Simply Supported and Free Radial Edges

  • Han, Bong-Ko;Kim, Joo-Woo
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.214-225
    • /
    • 1999
  • An accurate method is presented for flexural vibrations of sectorial plates having simply supported-free and free-free radial edges, when the circular edge is either clamped or simply supported. The classical Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displacements. These sets consist of : (1) mathematically complete algebraic-trigonometric polynomials which gurantee convergence to exact frequencies as sufficient terms are retained, and (2) comer functions which account for the bending moment singularities at re-entrant comer of the radial edges having arbitrary edge conditions. Accurate (at least four significant figures) frequencies and normalized contours of the transverse vibratory displacement are presented for the spectra of corner angles [90$^{\circ}$, 180$^{\circ}$(semi-circular), 270$^{\circ}$, 300$^{\circ}$, 330$^{\circ}$, 350$^{\circ}$, 355$^{\circ}$, 360$^{\circ}$ (complete circular)] causing a re-entrant comer of the radial edges. Future solutions drawn from alternative numerical procedures and finite element techniques may be compared with these accurate results.

  • PDF

Hydroelastic Vibration of a Rectangular Tank Partially Surrounding with a Liquid (유체에 부분적으로 둘러싸인 사각형 용기의 접수진동)

  • Jeong, Kyeong-Hoon;Kim, Jong-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.207-215
    • /
    • 2015
  • This paper deals with a theoretical method to calculate natural frequencies of a fixed-free rectangular tank partially in contact with an outer water gap. Orthogonal polynomials satisfying the boundary conditions of the tank are used as admissible functions in the Rayleigh-Ritz method. A quarter model of the liquid-coupled system is constructed and it is simplified to a line supported flat plate in contact with the liquid. The liquid displacement potential functions satisfying the Laplace equation and water boundary conditions are derived, and the finite Fourier transform is accomplished in conjunction with the compatibility requirement along the contacting interfaces between the tank and water. An eigenvalue problem is derived so that the natural frequencies of the wet rectangular tank can be extracted. The predictions from the proposed analytical method show good agreement with the finite element analysis results.