• Title/Summary/Keyword: adjacent nodes

Search Result 166, Processing Time 0.023 seconds

Minimum Deficiency Ordering with the Clique Storage Structure (클릭저장구조에서 최소 부족수 순서화의 효율화)

  • Seol, Tong-Ryeol;Park, Chan-Kyoo;Park, Soon-Dal
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.3
    • /
    • pp.407-416
    • /
    • 1998
  • For fast Cholesky factorization, it is most important to reduce the number of nonzero elements by ordering methods. Generally, the minimum deficiency ordering produces less nonzero elements, but it is very slow. We propose an efficient implementation method. The minimum deficiency ordering requires much computations related to adjacent nodes. But, we reduce those computations by using indistinguishable nodes, the clique storage structures, and the explicit storage structures to compute deficiencies.

  • PDF

Power Line Channel Model Considering Adjacent Nodes with Reduced Calculation Complexity due to Multipath Signal Propagation and Network Size Using Infinite Geometric Series and Matrices (무한 등비급수와 행렬을 이용하여 멀티 패스 신호 전송과 네트워크 크기에 의한 계산의 복잡성을 줄이고 근접 노드의 영향을 고려한 전력선 통신 채널 모델)

  • Shin, Jae-Young;Jeong, Ji-Chai
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.2
    • /
    • pp.248-255
    • /
    • 2009
  • We proposed a power line channel model. We adopted advantages of other power line channel models to calculate channel responses correctly and simply. Infinite geometric series reduced the calculation complexity of the multipath signal propagation. Description Matrices were also adopted to handle the network topology easily. It represents complex power line network precisely and simply. Newly proposed model considered the effect of the adjacent nodes to channel responses, which have been not considered so far. Several simulations were executed to verify the effect of the adjacent nodes. As a result we found out that it affected channel responses but its effect was limited within certain degree.

New slave-node constraints and element for adaptive analysis of C0 plates

  • Sze, K.Y.;Wu, D.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.339-360
    • /
    • 2011
  • In the h-type adaptive analysis, when an element is refined or subdivided, new nodes are added. Among them are the transition nodes which are the corner nodes of the new elements formed by subdivision and, simultaneously, the mid-side nodes of the adjacent non-subdivided elements. To secure displacement compatibility, the slave-node approach in which the DOFs of a transition node are constrained by those of the adjacent nodes had been used. Alternatively, transition elements which possess the transition nodes as active mid-side/-face nodes can be used. For C0 plate analyses, the conventional slave-node constraints and the previously derived ANS transition elements are implemented. In both implementations, the four-node element is the ANS element. With reference to the predictions of the transition elements, the slave-node approach not only delivers erroneous results but also fails the patch test. In this paper, the patch test failure is resolved by developing a set of new constraints with which the slave-node approach surpasses the transition-element approach. The accuracy of the slave-node approach is further improved by developing a hybrid four-node element in which the assumed moment and shear force modes are in strict equilibrium.

Magnetic resonance imaging characteristic of lymph nodes: Comparison of T1 and T2 weighted image in normal rabbits (림프절의 자기공명영상의 특징: 가토에서 T1과 T2 강조영상의 비교)

  • Lee, Ki-chang;Choi, Min-cheol;Choi, Ho-Jung;Yoon, Jung-hee;Choi, Seong-hong;Moon, Woo-kyung;Chung, Jin-Wook
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.2
    • /
    • pp.311-315
    • /
    • 2004
  • The detection of lymph node metastasis is an important step in tumor staging and is significant for therapy planning. It has been challenged to yield an appropriate image with diagnostic methods such as Magnetic Resonance (MR) and Computed Tomography (CT). Though CT has been used widely and accessed easily to show internal organs, it can hardly provide difference between lymph node and adjacent vessel or fat tissue. It has been well established that MR can reveal the subtle discrepancy within soft tissue. This study investigated the suitability of MR lymph node imaging without contrast enhancement by comparison of T1-weighted image (T1WI) and T2- weighted image (T2WI) in ten normal rabbits. According to the pulse sequence optimized from preliminary study, T1-weighted spin-echo (repetition time/echo time=400/12 ms) and T-2 weighted fast spin-echo (repetition time/echo time=3500/84 ms) images covering the hind limbs and pelvic region were acquired at 1.5 T. Two radiologists scrupulously evaluated the MR images in consensus. And signal intensity of lymph nodes was compared with that of adjacent fat. Statistical analysis showed that T1-weighted coronal image visualized the lymph nodes (iliac, superficial inguinal and popliteal lymph nodes) quickly and consistently rather than T2-weighted one. Conclusively, T1WI for evaluation of lymph nodes is moderately better than T2WI and appears to have potential for quick and sufficient mapping of the lymph nodes. In addition, this normal MR image of lymph nodes could be applied to further study for the evaluation of lymphatic system in abscess and tumor bearing animal model.

Adjacent Matrix-based Hole Coverage Discovery Technique for Sensor Networks

  • Wu, Mary
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.169-176
    • /
    • 2019
  • Wireless sensor networks are used to monitor and control areas in a variety of military and civilian areas such as battlefield surveillance, intrusion detection, disaster recovery, biological detection, and environmental monitoring. Since the sensor nodes are randomly placed in the area of interest, separation of the sensor network area may occur due to environmental obstacles or a sensor may not exist in some areas. Also, in the situation where the sensor node is placed in a non-relocatable place, some node may exhaust energy or physical hole of the sensor node may cause coverage hole. Coverage holes can affect the performance of the entire sensor network, such as reducing data reliability, changing network topologies, disconnecting data links, and degrading transmission load. It is possible to solve the problem that occurs in the coverage hole by finding a coverage hole in the sensor network and further arranging a new sensor node in the detected coverage hole. The existing coverage hole detection technique is based on the location of the sensor node, but it is inefficient to mount the GPS on the sensor node having limited resources, and performing other location information processing causes a lot of message transmission overhead. In this paper, we propose an Adjacent Matrix-based Hole Coverage Discovery(AMHCD) scheme based on connectivity of neighboring nodes. The method searches for whether the connectivity of the neighboring nodes constitutes a closed shape based on the adjacent matrix, and determines whether the node is an internal node or a boundary node. Therefore, the message overhead for the location information strokes does not occur and can be applied irrespective of the position information error.

Routing Metric to Recognize Traffic Interference In Wireless Mesh Networks (무선 메쉬 네트워크에서 트래픽 간섭 인지 라우팅 메트릭 기법)

  • Lee, Sung-Hun;Lee, Hyung-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.59-64
    • /
    • 2009
  • This paper is intended to study how well the routing protocol supplied in wireless mesh networks can evade interference path along the applied routing metric. Wireless mesh networks, unlike existing network techniques, has the characteristics that node movement is less and energy effect is limited. Therefore. this type of network requires path configuring technique to reflect such network characteristics and new routing metric to determine proper path. Routing metric proposed recently is designed to produce link quality accurately, but it configures path not considering the traffic situation of adjacent nodes. Thus. this technique has the problems of reduced transfer rate and delay between terminals occurring due to frequent traffic chaos by the interference of adjacent nodes. Therefore, this paper proposes metric that configures routing path by finding like metric that can transfer data effectively by considering the traffic situation of adjacent nodes. We confirmed through simulation that the proposed routing metric reduces the delay between terminals via the path that evades the traffic interference of adjacent node.

Place Assimilation in OT

  • Lee, Sechang
    • Proceedings of the KSPS conference
    • /
    • 1996.10a
    • /
    • pp.109-116
    • /
    • 1996
  • In this paper, I would like to explore the possibility that the nature of place assimilation can be captured in terms of the OCP within the Optimality Theory (Mccarthy & Prince 1999. 1995; Prince & Smolensky 1993). In derivational models, each assimilatory process would be expressed through a different autosegmental rule. However, what any such model misses is a clear generalization that all of those processes have the effect of avoiding a configuration in which two consonantal place nodes are adjacent across a syllable boundary, as illustrated in (1):(equation omitted) In a derivational model, it is a coincidence that across languages there are changes that have the result of modifying a structure of the form (1a) into the other structure that does not have adjacent consonantal place nodes (1b). OT allows us to express this effect through a constraint given in (2) that forbids adjacent place nodes: (2) OCP(PL): Adjacent place nodes are prohibited. At this point, then, a question arises as to how consonantal and vocalic place nodes are formally distinguished in the output for the purpose of applying the OCP(PL). Besides, the OCP(PL) would affect equally complex onsets and codas as well as coda-onset clusters in languages that have them such as English. To remedy this problem, following Mccarthy (1994), I assume that the canonical markedness constraint is a prohibition defined over no more than two segments, $\alpha$ and $\beta$: that is, $^{*}\{{\alpha, {\;}{\beta{\}$ with appropriate conditions imposed on $\alpha$ and $\beta$. I propose the OCP(PL) again in the following format (3) OCP(PL) (table omitted) $\alpha$ and $\beta$ are the target and the trigger of place assimilation, respectively. The '*' is a reminder that, in this format, constraints specify negative targets or prohibited configurations. Any structure matching the specifications is in violation of this constraint. Now, in correspondence terms, the meaning of the OCP(PL) is this: the constraint is violated if a consonantal place $\alpha$ is immediately followed by a consonantal place $\bebt$ in surface. One advantage of this format is that the OCP(PL) would also be invoked in dealing with place assimilation within complex coda (e.g., sink [si(equation omitted)k]): we can make the constraint scan the consonantal clusters only, excluding any intervening vowels. Finally, the onset clusters typically do not undergo place assimilation. I propose that the onsets be protected by certain constraint which ensures that the coda, not the onset loses the place feature.

  • PDF

Comparison of the Node Method and the Pipeline Method for the Analysis of Water Distribution Systems (배수관망해석(配水管網解析)에 있어서 절점유출법(節点流出法)과 관로유출법(管路流出法)의 비교(比較))

  • Lee, Sang Mok;Lyu, Jong Hyun;Hyun, In Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.85-93
    • /
    • 1996
  • This study is to make a comparison between the node method and the pipeline method for the analysis of the water distribution systems. For these purposes, the two methods were applied to a pipeline system in series, an artificial distribution network and a real distribution network. The results are as follows. 1. The difference between the results of the two methods was increased with the increase of the hydraulic gradient and the length between two adjacent nodes. 2. When all pipe lengths between two adjacent nodes were larger than 200~300m and have the steep hydraulic gradient, it was found that the results of the two methods showed high differences. 3. The difference between the results of the two methods were negligible in the case of the real distribution system in which only 12% whole pipelines were longer than 30m and the longest pipe length was 850m.

  • PDF

A Greedy Algorithm for Minimum Power Broadcast in Wireless Networks (무선 네트워크에서 최소전력 브로드캐스트를 위한 탐욕 알고리즘)

  • Lee, Dong-ho;Jang, Kil-woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.641-644
    • /
    • 2016
  • Unlike wired networks, broadcasting in wireless networks can transmit data at once to several nodes with a single transmission. For omnidirectional broadcast to a node in wireless networks, all adjacent nodes receive the data at the same time. In this paper, we propose a greedy algorithm to solve the minimum power broadcasting problem of minimizing the total transmit power on broadcasting in wireless networks. We apply two matrices to the proposed algorithm: one is a distance matrix that represents the distance between each node, the other is an adjacency matrix having the number of adjacency nodes. Among the nodes that receive the data, a node that has the greatest number of the adjacent node transmits data to neighbor preferential. We compare the performance of the proposed algorithm with random method through computer simulation in terms of transmitting power of nodes. Experiment results show that the proposed algorithm outperforms better than the random method.

  • PDF

A Transmission Algorithm to Improve Energy Efficiency in Cluster based Wireless Sensor Networks (클러스터 기반의 무선 센서 네트워크에서 에너지 효율을 높이기 위한 전송 알고리즘)

  • Lee, Dong-ho;Jang, Kil-woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.645-648
    • /
    • 2016
  • Cluster based wireless sensor networks have a characteristic that the cluster heads collect and aggregate data from sensor nodes and send data to sink node. In addition, between the adjacent sensor nodes deployed in the same area is characterized to the similar sensing data. In this paper, we propose a transmission algorithm for improving the energy efficiency using these two features in the cluster-based wireless sensor networks. Adjacent neighboring nodes form a pair and the two nodes sense data on shifts for one round. Additionally, two cluster heads are selected in a cluster and one of them alternately collects data from nodes and transmits data to the sink. This paper describes a transmission rounding method and a transmission frame for increasing energy efficiency and compared with conventional methods. We perform computer simulations to evaluate the performance of the proposed algorithm, and show better performance in terms of energy efficiency as compared with the LEACH algorithm.

  • PDF