• 제목/요약/키워드: adjacent ground settlement

검색결과 88건 처리시간 0.029초

Experimental investigation of earth pressure on retaining wall and ground settlement subjected to tunneling in confined space

  • Jinyuan Wang;Wenjun Li;Rui Rui;Yuxin Zhai;Qing He
    • Geomechanics and Engineering
    • /
    • 제32권2호
    • /
    • pp.179-191
    • /
    • 2023
  • To study the influences of tunneling on the earth pressure and ground settlement when the tunnel passes through the adjacent underground retaining structure, 30 two-dimensional model tests were carried out taking into account the ratios of tunnel excavation depth (H) to lateral width (w), excavation width (B), and excavation distance using a custom-made test device and an analogical soil. Tunnel crossing adjacent existing retaining structure (TCE) and tunnel crossing adjacent newly-built retaining structure (TCN) were simulated and the earth pressure variations and ground settlement distribution during excavation were analyzed. For TCE condition, the earth pressure increments, maximum ground settlement and the curvature of the ground settlement curve are negatively related to H/B, but positively related to H/s and H/w. For TCN condition, most trends are consistent with TCE except that the earth pressure increments and the curvature of ground settlement curve are negatively related to H/w. The maximum ground settlement is larger than that observed in tunnel crossing the existing underground structure. This study provides an assessment basis for the design and construction under confined space conditions.

GIS기반을 이응한 도심지 터널굴착에 따른 인접 구조물 손상평가 시스템 개발 (Development of GIS Based Risk Assessment System for Adjacent Structures Due to Tunnelling-Induced Ground Movements in Urban)

  • 윤효석;박용원;오영석;김제규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.493-500
    • /
    • 2001
  • The construction of bored tunnels in soft ground inevitably causes ground movements. In the urban environment these may be of particular significance, because of their influence on buildings, other tunnels and services. The prediction of ground movements and the assessment of the potential effects on the structures is therefore an essential aspect of planning, design and construction of a tunnelling project in the urban environment. In this study, to minimize the effect of tunnelling-Induced ground movements on the adjacent structures, a system for tile settlement risk management was developed. The GIS based risk assessment system for adjacent structures developed in this study consists of several modules such as building information module, settlement evaluation module, potential risk assessment module for adjacent structures, and analysis module for monitoring data. This system focuses on controlling and managing construction processes that may lead to settlement In the surrounding buildings and can contribute to producing the optimum technical and economic design.

  • PDF

원형 수직구 굴착에 따른 발생 지반침하 분석 (Analysis of ground settlement due to circular shaft excavation)

  • 손무락;이강렬
    • 한국터널지하공간학회 논문집
    • /
    • 제25권2호
    • /
    • pp.87-99
    • /
    • 2023
  • 지반굴착은 필연적으로 인접지반의 지반변위를 유발시키며, 지반변위에 노출된 구조물 및 시설물들은 다양한 피해를 입을 수 있다. 따라서 굴착유발 인접구조물 및 시설물의 손상 및 피해를 최소화하기 위해서는 우선적으로 굴착으로 인해 발생하는 인접지반에서의 지반변위(침하 및 수평변위)를 예측하여야 한다. 흙막이 굴착 유발 지반변위 정보는 상대적으로 많이 존재하지만 원형 형태의 수직구 굴착에 대한 지반변위 정보는 충분치 않다. 본 연구에서는 수직구 굴착에 대한 사례분석 및 흙막이 굴착과의 비교를 통해서 수직구 굴착유발 인접지반 침하예측에 대한 정보를 제공하고자 한다. 본 연구를 통해서 수직구 굴착 시 침하관리 기준으로서 흙막이 굴착의 침하기준을 사용하는 것은 안전성 측면에서 보수적인 접근방법으로 판단되나 경제성 측면을 고려할 때 벽체의 과다설계를 초래할 수 있어 수직구 굴착에 대해 보다 합리적인 침하기준이 필요한 것으로 나타났다.

Prediction methods on tunnel-excavation induced surface settlement around adjacent building

  • Ding, Zhi;Wei, Xin-jiang;Wei, Gang
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.185-195
    • /
    • 2017
  • With the rapid development of urban underground traffic, the study of soil deformation induced by subway tunnel construction and its settlement prediction are gradually of general concern in engineering circles. The law of soil displacement caused by shield tunnel construction of adjacent buildings is analyzed in this paper. The author holds that ground surface settlement based on the Gauss curve or Peck formula induced by tunnel excavation of adjacent buildings is not reasonable. Integrating existing research accomplishments, the paper proposed that surface settlement presents cork distribution curve characters, skewed distribution curve characteristics and normal distribution curve characteristics when the tunnel is respectively under buildings, within the scope of the disturbance and outside the scope of the disturbance. Calculation formulas and parameters on cork distribution curve and skewed distribution curve were put forward. The numerical simulation, experimental comparison and model test analysis show that it is reasonable for surface settlement to present cork distribution curve characters, skewed distribution curve characteristics and normal distribution curve characteristics within a certain range. The research findings can be used to make effective prediction of ground surface settlement caused by tunnel construction of adjacent buildings, and to provide theoretical guidance for the design and shield tunnelling.

터널 굴착에 따른 지반 및 인접구조물의 3차원 거동 (3-D Behavior of Adjacent Structures in Tunnelling Induced Ground Movements)

  • 김찬국;황의석;김학문
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.663-670
    • /
    • 2003
  • Urban tunnelling need to consider not only the stability of tunnel itself but also the ground movement regarding adjacent structures. This paper present 3-D behavior of adjacent structures due to tunnelling induced ground movements by means of field measuring data and nonlinear FEM tunnel analysis. The results of the analytical methods from Mohr-Coulomb model are compared with the site measurement data obtained during the twin tunnel construction. It was found that the location and stiffness of the structure influence greatly the shape and pattern of settlement trough. The settlement trough for Greenfield condition was different from the trough for existing adjacent structures. Therefore the load and stiffness of adjacent structures should be taken into account for the stability analysis of the structures.

  • PDF

${\bigcirc}{\bigcirc}$역사 지하철 환승통로 주변지반 침하 원인 및 대책에 관한 연구 (Inspeciton for Ground Settlement and Its Contermeasurement Under ${\bigcirc}{\bigcirc}$-Station Passenger Way Adjacent to Ground Excavation)

  • 윤태국;추진호;김홍균;고희규;한동은
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2879-2884
    • /
    • 2011
  • Ground settlement has been occurred at asphalt pavement above ${\bigcirc}{\bigcirc}$ station passenger way adjacent to ground excavation with SPS method. In this study, emergency inspection has been conducted 4 detailed areas by KISTEC; SPS, sewage box, 50m box in subway, and ${\bigcirc}{\bigcirc}$ station. Field description and previous reports have been analyzed with the elapsed years. Not only precise inspection with several NDTs but also stability analysis by FLAC have been performed to estimated the tendency of settlement at sunk pavement area. Additional monitoring system and water analysis from sewage and SPS have been examined to scrutinize the reason and maintenance for settlement.

  • PDF

Analysis of pile group behaviour to adjacent tunnelling considering ground reinforcement conditions with assessment of stability of superstructures

  • Young-Jin Jeon;Cheol-Ju Lee
    • Geomechanics and Engineering
    • /
    • 제33권5호
    • /
    • pp.463-475
    • /
    • 2023
  • Tunnel construction activity, conducted mainly in mountains and within urban centres, causes soil settlement, thus requiring the relevant management of slopes and structures as well as evaluations of risk and stability. Accordingly, in this study we performed a three-dimensional finite element analysis to examine the behaviour of piles and pile cap stability when a tunnel passes near the bottom of the foundation of a pile group connected by a pile cap. We examined the results via numerical analysis considering different conditions for reinforcement of the ground between the tunnel and the pile foundation. The numerical analysis assessed the angular distortion of the pile cap, pile settlement, axial force, shear stress, relative displacement, and volume loss due to tunnel excavation, and pile cap stability was evaluated based on Son and Cording's evaluation criterion for damage to adjacent structures. The pile located closest to the tunnel under the condition of no ground reinforcement exhibited pile head settlement approximately 70% greater than that of the pile located farthest from the tunnel under the condition of greatest ground reinforcement. Additionally, pile head settlement was greatest when the largest volume loss occurred, being approximately 18% greater than pile head settlement under the condition having the smallest volume loss. This paper closely examines the main factors influencing the behaviour of a pile group connected by a pile cap for three ground reinforcement conditions and presents an evaluation of pile cap stability.

A displacement controlled method for evaluating ground settlement induced by excavation in clay

  • Qian, Jiangu;Tong, Yuanmeng;Mu, Linlong;Lu, Qi;Zhao, Hequan
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.275-285
    • /
    • 2020
  • Excavation usually induces considerable ground settlement in soft ground, which may result in damage of adjacent buildings. Generally, the settlement is predicted through elastic-plastic finite element method and empirical method with defects. In this paper, an analytical solution for predicting ground settlement induced by excavation is developed based on the definition of three basic modes of wall displacement: T mode, R mode and P model. A separation variable method is employed to solve the problem based on elastic theory. The solution is validated by comparing the results from the analytical method with the results from finite element method(FEM) and existing measured data. Good agreement is obtained. The results show that T mode and R mode will result in a downward-sloping ground settlement profile. The P mode will result in a concave-type ground settlement profile.

지중연속벽 시공을 위한 트렌치 굴착시 지반변형에 관한 모형실험 (Model Tests on Ground Deformation during Trench Excavation for Diaphragm Walls)

  • 홍원표;이문구;이재호
    • 한국지반공학회논문집
    • /
    • 제22권12호
    • /
    • pp.77-88
    • /
    • 2006
  • 지중연속벽 시공을 위한 트렌치 굴착시 굴착배면지반의 침하거동을 규명하기 위한 모형실험을 실시하였다. 트렌치 굴착을 모사하는 모형실험장치를 제작하였으며 계측시스템을 이용하여 트렌치 굴착시 굴착배면지반의 침하를 측정하였다. 모형실험결과 트렌치 굴착시 굴착배면지반의 침하량은 굴착면에 가까워질수록 크게 증가하는 경향을 보이는 것으로 나타났다. 지반의 상대밀도가 작고, 지하수위가 높을수록 굴착시 배면지반에서의 침하량은 크게 발생하였다. 그리고, 굴착배면지반에서의 침하량은 최종 굴착깊이의 약40%에 해당하는 이격거리에서 급격하게 증가함을 알 수 있었다. 한편, 트렌치 굴착완료후 굴착면내 안정액의 수위를 저하시킬 경우 굴착측벽에서는 벌징(Bulging) 현상이 발생되고, 굴착배면지반에서는 침하현상이 발생되어 종국에는 굴착면 상부에서 지반붕괴가 발생되었다. 모형실험에서 측정된 굴착배면지반에서의 침하량은 Clough and O'Rourke(1990)에 의해 제안된 침하량보다 작게 발생하였으며, 굴착배면지반의 침하기준선은 굴착벽면 주변에서 급격하게 증가하는 쌍곡선형태로 관찰되었다.

CGS 공법에 의한 지반침하억제 사례연구 (A Case Study on the Plan for Settlement Restraint by CGS)

  • 천병식;여유현;김우종;황성식;김우철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.611-618
    • /
    • 2002
  • In this study the CGS as an injection method by low slump mortar was performed the pilot test to confirm the applicability of this method and the effectiveness of settlement restraint. From the results, there has been concluded the construction control standard such as an institutional diameter, space, depth, injection materials, Infection pressure etc. Also, there has been estimated the ground improvement effectiveness which has resulted from the field investigation and consolidation test etc. From the results, in the adjacent ground the CGS, generally, has been confirmed to in-crease ground strength to improve the consolidation characteristic obtained from the field investigation and consolidation test. Especially, the CGS which performed the larger stiffness to the ground has been concluded that the settlement restraint to the ground complicates the ground effect which Increases the bearing capacity and stress assignment. So, the CGS can be considered as an effective method to increase the bearing capacity as well as the settlement restraint of soft ground.

  • PDF