• Title/Summary/Keyword: adipose-derived mesenchymal stem cells

Search Result 87, Processing Time 0.027 seconds

The Efficacy and Safety of Platelet-Rich Plasma and Adipose-Derived Stem Cells: An Update

  • Choi, Jaehoon;Minn, Kyung Won;Chang, Hak
    • Archives of Plastic Surgery
    • /
    • v.39 no.6
    • /
    • pp.585-592
    • /
    • 2012
  • During the past decade, many studies using platelet-rich plasma (PRP) or adipose-derived stem cells (ASCs) have been conducted in various medical fields, from cardiovascular research to applications for corneal diseases. Nonetheless, there are several limitations of practical applications of PRP and ASCs. Most reports of PRP are anecdotal and few include controls to determine the specific role of PRP. There is little consensus regarding PRP production and characterization. Some have reported the development of an antibody to bovine thrombin, which was the initiator of platelet activation. In the case of ASCs, good manufacturing practices are needed for the production of clinical-grade human stem cells, and in vitro expansion of ASCs requires approval of the Korea Food and Drug Administration, such that considerable expense and time are required. Additionally, some have reported that ASCs could have a potential risk of transformation to malignant cells. Therefore, the authors tried to investigate the latest research on the efficacy and safety of PRP and ASCs and report on the current state and regulation of these stem cell-based therapies.

Immunosuppression-enhancing effect of the administration of allogeneic canine adipose-derived mesenchymal stem cells (cA-MSCs) compared with autologous cA-MSCs in vitro

  • Wi, Hayeon;Lee, Seunghoon;Kim, Youngim;No, Jin-Gu;Lee, Poongyeon;Lee, Bo Ram;Oh, Keon Bong;Hur, Tai-young;Ock, Sun A
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.63.1-63.14
    • /
    • 2021
  • Background: Recently, mesenchymal stem cells therapy has been performed in dogs, although the outcome is not always favorable. Objectives: To investigate the therapeutic efficacy of mesenchymal stem cells (MSCs) using dog leukocyte antigen (DLA) matching between the donor and recipient in vitro. Methods: Canine adipose-derived MSCs (cA-MSCs) isolated from the subcutaneous tissue of Dog 1 underwent characterization. For major DLA genotyping (DQA1, DQB1, and DRB1), peripheral blood mononuclear cells (PBMCs) from two dogs (Dogs 1 and 2) were analyzed by direct sequencing of polymerase chain reaction (PCR) products. The cA-MSCs were co-cultured at a 1:10 ratio with activated PBMCs (DLA matching or mismatching) for 3 days and analyzed for immunosuppressive (IDO, PTGS2, and PTGES), inflammatory (IL6 and IL10), and apoptotic genes (CASP8, BAX, TP53, and BCL2) by quantitative real-time reverse transcriptase-PCR. Results: cA-MSCs were expressed cell surface markers such as CD90+/44+/29+/45- and differentiated into osteocytes, chondrocytes, and adipocytes in vitro. According to the Immuno Polymorphism Database, DLA genotyping comparisons of Dogs 1 and 2 revealed complete differences in genes DQA1, DQB1, and DRB1. In the co-culturing of cA-MSCs and PBMCs, DLA mismatch between the two cell types induced a significant increase in the expression of immunosuppressive (IDO/PTGS2) and apoptotic (CASP8/BAX) genes. Conclusions: The administration of cA-MSCs matching the recipient DLA type can alleviate the need to regulate excessive immunosuppressive responses associated with genes, such as IDO and PTGES. Furthermore, easy and reliable DLA genotyping technology is required because of the high degree of genetic polymorphisms of DQA1, DQB1, and DRB1 and the low readability of DLA 88.

Role of NFAT5 in Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells (인체 지방 유래 중간엽 줄기세포의 골분화 조절 기전에서 NFAT5의 역할)

  • Lee, Sun Young;Yang, Ji won;Jung, Jin Sup
    • Journal of Life Science
    • /
    • v.23 no.4
    • /
    • pp.471-478
    • /
    • 2013
  • Human adipose tissue-derived mesenchymal stem cells (hADSCs) have therapeutic potential, including the ability to self-renew and differentiate into multiple lineages. Understanding of molecular mechanisms of stem cell differentiation is important for improving the therapeutic efficacies of stem cell transplantation. In this study, we determined the role of nuclear factor of activated T cells (NFAT5) in the osteogenic differentiation of hADSCs. The down-regulation of NFAT5 expression by the transfection of a specific siRNA significantly inhibited osteogenic differentiation of hADSCs and decreased the activity of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-${\kappa}B$) promoter without affecting their proliferation and adipogenic differentiation. The inhibition of NFAT5 expression inhibited the basal and Tumor Necrosis Factor ${\alpha}$ (TNF-${\alpha}$) induced activation of NF-${\kappa}B$, but it did not affect TNF-${\alpha}$-induced degradation of the $I{\kappa}B$ protein. These findings indicate that NFAT5 plays an important role in the osteogenic differentiation of hADSCs through the modulation of the NF-${\kappa}B$ pathway.

Rapid deterioration of preexisting renal insufficiency after autologous mesenchymal stem cell therapy

  • Kim, Jun-Seop;Lee, Jong-Hak;Kwon, Owen;Cho, Jang-Hee;Choi, Ji-Young;Park, Sun-Hee;Kim, Chan-Duck;Kim, Yong-Jin;Kim, Yong-Lim
    • Kidney Research and Clinical Practice
    • /
    • v.36 no.2
    • /
    • pp.200-204
    • /
    • 2017
  • Administration of autologous mesenchymal stem cells (MSCs) has been shown to improve renal function and histological findings in acute kidney injury (AKI) models. However, its effects in chronic kidney disease (CKD) are unclear, particularly in the clinical setting. Here, we report our experience with a CKD patient who was treated by intravenous infusion of autologous MSCs derived from adipose tissue in an unknown clinic outside of Korea. The renal function of the patient had been stable for several years before MSC administration. One week after the autologous MSC infusion, the preexisting renal insufficiency was rapidly aggravated without any other evidence of AKI. Hemodialysis was started 3 months after MSC administration. Renal biopsy findings at dialysis showed severe interstitial fibrosis and inflammatory cell infiltration, with a few cells expressing CD34 and CD117, 2 surface markers of stem cells. This case highlights the potential nephrotoxicity of autologous MSC therapy in CKD patients.

Immunomodulatory Effect of Mesenchymal Stem Cell-Derived Exosomes in Lipopolysaccharide-Stimulated RAW 264.7 Cells (Lipopolysaccharide로 자극한 RAW 264.7 세포에서 성체줄기세포 유래 엑소좀(exosome)의 면역 조절 효과)

  • Jung, Soo-Kyung;Park, Mi Jeong;Lee, Jienny;Byeon, Jeong Su;Gu, Na-Yeon;Cho, In-Soo;Cha, Sang-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.383-390
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) are multipotent stem cells that can be differentiated into a variety of cell types, including adipocytes, osteoblasts, chondrocytes, β-pancreatic islet cells, and neuronal cells. MSCs have been reported to exhibit immunomodulatory effects in many diseases. Many studies have reported that MSCs have distinct roles in modulating inflammatory and immune responses by releasing bioactive molecules. Exosomes are cell-derived vesicles present in biological fluids, including the blood, urine, and cultured medium of cell cultures. In this study, we investigated the immunomodulatory effects of mouse adipose tissue-derived MSCs (mAD-MSCs), cultured medium (MSC-CM) of mAD-MSCs, and mAD-MSC-derived exosomes (MSC-Exo) on lipopolysaccharide (LPS)-induced RAW 264.7 cells. We observed that the expression levels of IL-1β, TNF-α, and IL-10 were significantly increased in LPS-stimulated RAW 264.7 cells compared to those in LPS-unstimulated RAW 264.7 cells. Additionally, these values were significantly (p < 0.05) decreased in mAD-MSCs-RAW 264.7 cell co-culture groups, MSC-CM-treated groups, and MSC-Exo-treated groups. MSCs can modulate the immune system in part by secreting cytokines and growth factors. We observed that immunomodulatory factors such as IL-1β, TNF-α, and IL-10 were secreted by mAD-MSCs under co-culturing conditions of mAD-MSCs with activated RAW 264.7 cells. In addition, mAD-MSC-derived exosomes exhibited similar immunomodulatory effects in activated RAW 264.7 cells. Therefore, our results suggest that mAD-MSCs have an immunomodulatory function through indirect contact.

Decreased Contact Inhibition in Mouse Adipose Mesenchymal Stem Cells

  • Jeon, Yunmi;Lee, Myung Sook;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.329-338
    • /
    • 2012
  • The proliferation of embryonic cells or adult stem cells in tissue is critically regulated during development and repair. How limited the proliferation of cells, so far, is not much explored. Cell-cell contact proliferation inhibition is known as a crucial mechanism regulating cell proliferation in vitro and in vivo. In this study we examined the characters of mouse subcutaneous adipose derived stem cells (msADSC) whether they lost or get contact inhibition during in vitro culture. The characters of msADSC growth after confluence were analyzed using confocal microscope and the expression profiles of contact inhibition related genes were analyzed according to the morphological changes using real-time PCR method. msADSC showed overlapping growth between them but not after passage 14. The cell shapes were also changed after passage 14. The expression profiles of genes which are involved in contact inhibition were modified in the msADSC after passage 14. The differentiation ability of msADSCs to adipocyte, chondrocyte and osteocyte was not changed by such changes of gene expression profiles. Based on these results, it is revealed that smADSC were characterized by getting of strong cell-cell contact inhibition after passage 14 but the proliferation and developmental ability were not blocked by the change of cell-cell contact proliferation inhibition. These finding will help to understand the growth of adipose tissue, although further studies are needed to evaluate the physiological meaning of the cell-cell contact proliferation inhibition during in vitro culture of msADSC.

Characterization of Human Thigh Adipose-derived Stem Cells (사람의 허벅지지방유래 줄기세포의 특성 분석)

  • Heo, Jin-Yeong;Yoon, Jin-Ah;Kang, Hyun-Mi;Park, Se-Ah;Kim, Hae-Kwon
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.233-241
    • /
    • 2010
  • Human adipose stem cells are an abundant, readily available population of multipotent progenitor cells that reside in adipose tissue and these cells have characteristics very similar to bone marrow mesenchymal stromal cells (BMMSCs). However, liposuction procedure, donor age, body mass index, and harvesting sites might generate differences in the initial cell population and the preparations are a heterogeneous mixture of precursors with different subsets. Therefore, in this study, we investigated the characteristics of human thigh adipose stem cells and the differentiation potential into mesodermal and endodermal lineage. Thigh adipose stem cells maintained fibroblast-like morphology similar to BM-MSCs and they underwent average 56.5 doublings and produced $5{\times}10^{22}$ cells. These cells expressed SCF, Oct4, nanog, vimentin, CK18, FGF5, NCAM, Pax6, BMP4, HNF4a, nestin, GATA4, HLA-ABC, and HLA-DR genes at p3 and they also expressed Oct4, Thy-1, FSP, vWF, vimentin, desmin, CK18, CD54, CD4, CD106, CD31, a-SMA, HLA-ABC proteins. Moreover, they could differentiate into mesodermal lineage cells such as adipocyte, osteoblast and chondrocyte. In addition, they also differentiated into insulin secreting cells in our culture condition. In conclusion, human thigh adipose stem cells retain proliferative potential and expression patterns similar to BM-MSCs and they also differentiate into various cell types. Thus, human thigh adipose stem cells might be useful alternative cell source for clinical application.

Role of TAZ in Lysophosphatidic Acid-Induced Migration and Proliferation of Human Adipose-Derived Mesenchymal Stem Cells

  • Mo, Won Min;Kwon, Yang Woo;Jang, Il Ho;Choi, Eun Jung;Kwon, Sang Mo;Kim, Jae Ho
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.354-361
    • /
    • 2017
  • Transcriptional co-activator with a PDZ-binding motif (TAZ) is an important factor in lysophosphatidic acid (LPA)-induced promotion of migration and proliferation of human mesenchymal stem cells (MSCs). The expression of TAZ significantly increased at 6 h after LPA treatment, and TAZ knockdown inhibited the LPA-induced migration and proliferation of MSCs. In addition, embryonic fibroblasts from TAZ knockout mice exhibited the reduction in LPA-induced migration and proliferation. The LPA1 receptor inhibitor Ki16425 blocked LPA responses in MSCs. Although TAZ knockdown or knockout did not reduce LPA-induced phosphorylation of ERK and AKT, the MEK inhibitor U0126 or the ROCK inhibitor Y27632 blocked LPA-induced TAZ expression along with the reduction in the proliferation and migration of MSCs. Our data suggest that TAZ is an important mediator of LPA signaling in MSCs in the downstream of MEK and ROCK signaling.

Metabolites of Kimchi Lactic Acid Bacteria, Indole-3-Lactic Acid, Phenyllactic Acid, and Leucic Acid, Inhibit Obesity-Related Inflammation in Human Mesenchymal Stem Cells

  • Moeun Lee;Daun Kim;Ji Yoon Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.306-313
    • /
    • 2024
  • Given the diversity of vegetables utilized in food fermentation and various lactic acid bacteria (LAB) populations in these materials, comprehensive studies on LAB from vegetable foods, including kimchi, are imperative. Therefore, this study aimed to investigate the obesity-related inflammation response of three metabolites-phenyllactic acid (PLA), indole-3-lactic acid (ILA), and leucic acid (LA)-produced by LAB (Companilactobacillus allii WiKim39 and Lactococcus lactis WiKim0124) isolated from kimchi. Their effects on tumor necrosis factor-α-induced changes in adipokines and inflammatory response in adipose-derived human mesenchymal stem cells were examined. The study results showed that PLA, ILA, and LA, particularly PLA, effectively reduced lipid accumulation and triglyceride, glycerol, free fatty acid, and adiponectin levels. Furthermore, the identified metabolites were found to modulate the expression of signaling proteins involved in adipogenesis and inflammation. Specifically, these metabolites were associated with enriched expression in the chemokine signaling pathway and cytokine-cytokine receptor interaction, which are critical pathways involved in regulating immune responses and inflammation. PLA, ILA, and LA also suppressed the secretion of pro-inflammatory cytokines and several inflammatory markers, with the PLA-treated group exhibiting the lowest levels. These results suggest that PLA, ILA, and LA are potential therapeutic agents for treating obesity and inflammation by regulating adipokine secretion and suppressing pro-inflammatory cytokine production.

Use of Human Adipose Tissue as a Source of Endothelial Cells (혈관내피세포 채취의 원천으로 인간 지방조직의 활용)

  • Park, Bong-Wook;Hah, Young-Sool;Kim, Jin-Hyun;Cho, Hee-Young;Jung, Myeong-Hee;Kim, Deok-Ryong;Kim, Uk-Kyu;Kim, Jong-Ryoul;Jang, Jung-Hui;Byun, June-Ho
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.4
    • /
    • pp.299-305
    • /
    • 2010
  • Purpose: Adipose tissue is located beneath the skin, around internal organs, and in the bone marrow in humans. Its main role is to store energy in the form of fat, although it also cushions and insulates the body. Adipose tissue also has the ability to dynamically expand and shrink throughout the life of an adult. Recently, it has been shown that adipose tissue contains a population of adult multipotent mesenchymal stem cells and endothelial progenitor cells that, in cell culture conditions, have extensive proliferative capacity and are able to differentiate into several lineages, including, osteogenic, chondrogenic, endothelial cells, and myogenic lineages. Materials and Methods: This study focused on endothelial cell culture from the adipose tissue. Adipose tissues were harvested from buccal fat pad during bilateral sagittal split ramus osteotomy for surgical correction of mandibular prognathism. The tissues were treated with 0.075% type I collagenase. The samples were neutralized with DMEM/and centrifuged for 10 min at 2,400 rpm. The pellet was treated with 3 volume of RBC lysis buffer and filtered through a 100 ${\mu}m$ nylon cell strainer. The filtered cells were centrifuged for 10 min at 2,400 rpm. The cells were further cultured in the endothelial cell culture medium (EGM-2, Cambrex, Walkersville, Md., USA) supplemented with 10% fetal bovine serum, human EGF, human VEGF, human insulin-like growth factor-1, human FGF-$\beta$, heparin, ascorbic acid and hydrocortisone at a density of $1{\times}10^5$ cells/well in a 24-well plate. Low positivity of endothelial cell markers, such as CD31 and CD146, was observed during early passage of cells. Results: Increase of CD146 positivity was observed in passage 5 to 7 adipose tissue-derived cells. However, CD44, representative mesenchymal stem cell marker, was also strongly expressed. CD146 sorted adipose tissue-derived cells was cultured using immuno-magnetic beads. Magnetic labeling with 100 ${\mu}l$ microbeads per 108 cells was performed for 30 minutes at $4^{\circ}C$ a using CD146 direct cell isolation kit. Magnetic separation was carried out and a separator under a biological hood. Aliquous of CD146+ sorted cells were evaluated for purity by flow cytometry. Sorted cells were 96.04% positivity for CD146. And then tube formation was examined. These CD146 sorted adipose tissue-derived cells formed tube-like structures on Matrigel. Conclusion: These results suggest that adipose tissue-derived cells are endothelial cells. With the fabrication of the vascularized scaffold construct, novel approaches could be developed to enhance the engineered scaffold by the addition of adipose tissue-derived endothelial cells and periosteal-derived osteoblastic cells to promote bone growth.