• 제목/요약/키워드: adipose-derived mesenchymal stem cell

검색결과 66건 처리시간 0.023초

Motor Function Recovery after Adipose Tissue Derived Mesenchymal Stem Cell Therapy in Rats with Cerebral Infarction

  • Kim, Chang-Hwan;Kim, Yang-Woon;Jang, Sung-Ho;Chang, Chul-Hoon;Jung, Jae-Ho;Kim, Seong-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • 제40권4호
    • /
    • pp.267-272
    • /
    • 2006
  • Objective : There have been recent reports that mesenchymal stromal cells that are harvested from adipose tissue are able to differentiate into neurons. In the present study, we administered adipose tissue derived stem cells in rats with cerebral infarction in order to determine whether those stem cells could enhance the recovery of motor function. Methods : Cerebral infarction was induced by intraluminal occlusion of middle cerebral artery in rats. The adipose tissue-derived mesenchymal stem cells were harvested from inguinal fat pad and proliferated for 2 weeks in DMEM media. Approximately $1{\times}10^6$ cells were injected intravenously or into subdural space of the peri-lesional area. The rotor rod test was performed at preoperative state[before MCA occlusion], and 1, 2, 3, 4, 6, 8 and 10 weeks after the cell therapy. Results : The motor functions that were assessed by rotor rod test at 1 week of the cell therapy were nearly zero among the experimental groups. However, there was apparent motor function recovery after 2 weeks and 4 weeks of cell injection in intravenously treated rats and peri-lesionaly treated rats, respectively, while there was no significant improvement till 8 weeks in vehicle treated rats. Conclusion : These results demonstrate that the adipose derived stem cell treatment improves motor function recovery in rats with cerebral infarction.

지방조직 유래 줄기세포의 조골세포로의 분화에 대한 실험적 연구 (A STUDY ON THE OSTEOGENIC DIFFERENTIATION OF ADIPOSE-DERIVED ADULT STEM CELL)

  • 이의석;장현석;권종진;임재석
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제30권2호
    • /
    • pp.133-141
    • /
    • 2008
  • Stem cells have self-renewal capacity, long-term viability, and multiline age potential. Adult bone marrow contains mesenchymal stem cells. Bone marrow-derived mesenchymal stem cells (BMSCs) are progenitors of skeletal tissue components and can differentiate into adipocytes, chondrocytes, osteoblasts, and myoblasts in vitro and undergo differentiation in vivo. However, the clinical use of BMSCs has presented problems, including pain, morbidity, and low cell number upon harvest. Recent studies have identified a putative stem cell population within the adipose tissue. Human adipose tissue contains pluripotent stem cells simillar to bone marrow-derived stem cells that can differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. Human adipose tissue-derived stem cells (ATSCs) could be proposed as an alternative source of adult bone marrow stem cells, and could be obtained in large quantities, under local anesthesia, with minimal discomfort. Human adipose tissue obtained by liposuction was processed to obtain ATSCs. In this study, we compared the osteogenic differentiation of ATSCs in a specific osteogenic induction medium with that in a non-osteogenic medium. ATSCs were incubated in an osteogenic medium for 28 days to induce osteogenesis respectively. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining. Expression of osteocyte specific bone sialoprotein, osteocalcin, collagen type I and alkaline phosphatase, bone morphogenic protein 2, bone morphogenic protein 6 was confirmed by RT-PCR. ATSCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes was also detected. Since this cell population can be easily identified through fluorescence microscopy, it may be an ideal source of ATSCs for further experiments on stem cell biology and tissue engineering. The present results show that ADSCs have an ability to differentiate into osteoblasts. In the present study, we extend this approach to characterize adipose tissue-derived stem cells.

Chondrogenesis of Mesenchymal Stem Cell Derived form Canine Adipose Tissue

  • Lee, Byung-Joo;Wang, Soo-Geun;Seo, Cheol-Ju;Lee, Jin-Chun;Jung, Jin-Sup;Lee, Ryang-Hwa
    • 대한음성언어의학회:학술대회논문집
    • /
    • 대한음성언어의학회 2003년도 제19회 학술대회
    • /
    • pp.183-183
    • /
    • 2003
  • Background and Objectives : Cartilage reconstruction is one of medical issue in otolaryngology. Tissue engineering is presently being utilized in part of cartilage repair. Sources of cells for tissue engineering are chondrocyte from mature cartilage and bone marrow mesenchymal stem cells that are able to differentiate into chondrocyte. Recent studies have shown that adipose tissue have mesenchymal stem cells which can differentiate into adipogenic, chondrogenic myogenic osteogenic cells and neural cell in vitro. In this study, we have examined chondrogenic potential of the canine adipose tissue-derived mesenchymal stem cell(ATSC). Materials and Methods : We harvested canine adipose tissue from inguinal area. ATSCs were enzymatically released from canine adipose tissue. Under appropriate culture conditions, ATSCs were induced to differentiate into the chondrocyte lineages using micromass culture technique. We used immunostain to type II collagen and toluidine blue stain to confirm chondrogenic differentiation of ATSCs. Results : We could isolate ATSCs from canine adipose tissue. ATSCs expressed CD29 and CD44 which are specific surface markers of mesenchymal stem cell. ATSCs differentiated into micromass that has positive response to immunostain of type II collagen and toluidine blue stain. Conclusion : In vitro, ATSCs differentiated into cells that have characteristic cartilage matrix molecules in the presence of lineage-specific induction factors. Adipose tissue may represent an alternative source to bone marrow-derived MSCs.

  • PDF

Down-Regulation of Sox11 Is Required for Efficient Osteogenic Differentiation of Adipose-Derived Stem Cells

  • Choi, Mi Kyung;Seong, Ikjoo;Kang, Seon Ah;Kim, Jaesang
    • Molecules and Cells
    • /
    • 제37권4호
    • /
    • pp.337-344
    • /
    • 2014
  • Adipose-derived stem cells represent a type of mesenchymal stem cells with the attendant capacity to self-renew and differentiate into multiple cell lineages. We have performed a microarray-based gene expression profiling of osteogenic differentiation and found that the transcription factor Sox11 is down-regulated during the process. Functional assays demonstrate that down-regulation of Sox11 is required for an efficient differentiation. Furthermore, results from forced expression of constitutively-active and dominant-negative derivatives of Sox11 indicate that Sox11 functions as a transcriptional activator in inhibiting osteogenesis. Sox11 thus represents a novel regulator of osteogenesis whose expression and activity can be potentially manipulated for controlled differentiation.

Human adipose-derived mesenchymal stem cell spheroids improve recovery in a mouse model of elastase-induced emphysema

  • Cho, Ryeon Jin;Kim, You-Sun;Kim, Ji-Young;Oh, Yeon-Mok
    • BMB Reports
    • /
    • 제50권2호
    • /
    • pp.79-84
    • /
    • 2017
  • Emphysema, a pathologic component of the chronic obstructive pulmonary disease, causes irreversible destruction of lung. Many researchers have reported that mesenchymal stem cells can regenerate lung tissue after emphysema. We evaluated if spheroid human adipose-derived mesenchymal stem cells (ASCs) showed greater regenerative effects than dissociated ASCs in mice with elastase-induced emphysema. ASCs were administered via an intrapleural route. Mice injected with spheroid ASCs showed improved regeneration of lung tissues, increased expression of growth factors such as fibroblast growth factor-2 (FGF2) and hepatocyte growth factor (HGF), and a reduction in proteases with an induction of protease inhibitors when compared with mice injected with dissociated ASCs. Our findings indicate that spheroid ASCs show better regeneration of lung tissues than dissociated ACSs in mice with elastase-induced emphysema.

개 지방세포 유래의 중간엽 줄기세포의 종양형성시험 (Tumorigenesis Study of Canine Adipose Derived-mesenchymal Stem Cell)

  • 이은선;권은아;박정란;강병철;강경선;조명행
    • Toxicological Research
    • /
    • 제23권3호
    • /
    • pp.271-278
    • /
    • 2007
  • Several recent studies demonstrated the potential of bioengineering using stem cells in regenerative medicine. Adult mesenchymal stem cells (MSCs) have the pluripotency to differentiate into cells of mesodermal origin, i.e., bone, cartilage, adipose, and muscle cells; they, therefore, have many potential clinical applications. On the other hand, stem cells possess a self-renewal capability similar to cancer cells. For safety evaluation of MSCs, in this study, we tested tumorigenecity of canine adipose derived mesenchymal stem cells (cAD-MSCs) using Balb/c-nu mice. In this study, there were no changes in mortality, clinical signs, body weights and biochemical parameters of all animals treated. In addition, there were no significant changes between control and treated groups in autopsy findings. These results indicate that cAD-MSC has no tumorigenic potential under the condition in this study.

Long-term Cryopreservation of Mesenchymal Stem Cells Derived from Human Eyelid Adipose and Amniotic Membrane: Maintenance of Stem Cell Characteristics

  • Song, Yeon-Hwa;Park, Se-Ah;Yun, Su-Jin;Yang, Hye-Jin;Yoon, A-Young;Kim, Haek-Won
    • 한국발생생물학회지:발생과생식
    • /
    • 제15권4호
    • /
    • pp.339-347
    • /
    • 2011
  • Human eyelid adipose-derived stem cells (hEAs) and amniotic mesenchymal stem cells (hAMs) are very valuable sources for the cell therapeutics. Both types of cells have a great proliferating ability in vitro and a multipotency to differentiate into adipocytes, osteoblasts and chondrocytes. In the present study, we evaluated their stem cell characteristics after long-time cryopreservation for 6, 12 and 24 months. When frozen-thawed cells were cultivated in vitro, their cumulative cell number and doubling time were similar to freshly prepared cells. Also they expressed stem cell-related genes of SCF, NANOG, OCT4, and TERT, ectoderm-related genes of NCAM and FGF5, mesoderm/endoderm-related genes of CK18 and VIM, and immune-related genes of HLA-ABC and ${\beta}$2M. Following differentiation culture in appropriate culture media for 2-3 weeks, both types of cells exhibited well differentiation into adipocyte, osteoblast, and chondrocyte, as revealed by adipogenic, osteogenic or chondrogenic-specific staining and related genes, respectively. In conclusion, even after long-term storage hEAs and hAMs could maintain their stem cell characteristics, suggesting that they might be suitable for clinical application based on stem cell therapy.

Flow cytometric immunophenotyping of canine adipose-derived mesenchymal stem cells (ADMSCs) and feline ADMSCs using anti-human antibodies

  • Ko, Minho;Lee, Kwon Young;Kim, Sae Hoon;Kim, Manho;Choi, Jung Hoon;Im, Wooseok;Chung, Jin Young
    • 대한수의학회지
    • /
    • 제58권1호
    • /
    • pp.33-37
    • /
    • 2018
  • Various trials have been conducted to develop therapies for serious untreatable diseases. Among these, those using stem cells have shown great promise, and adipose-derived mesenchymal stem cells (ADMSCs) are easier to obtain than other types of stem cells. Prior to clinical trials, characterization of ADMSCs with monoclonal antibodies should be performed. However, it is difficult to use species-specific antibodies for veterinarians. This study was conducted to confirm the panel of human antibodies applicable for use in immunophenotypic characterization of canine adipose-derived stem cells and feline ADMSCs extracted from subcutaneous adipose tissue collected during ovariohysterectomy. For flow cytometric immunophenotyping, the third passages of canine ADMSC and feline ADMSC and human CD31, CD34, CD42, CD44, CD62 and CD133 antibodies were used. Of these, CD133 reacted with canine cells (3.74%) and feline cells (1.34%). CD133 is known as a marker related with more primitive stem cell phenotype than other CD series. Because this human CD133 was not a species-specific antibody, accurate percentages of immunoreactivity were not confirmed. Nevertheless, the results of this study confirmed human CD133 as a meaningful marker in canine and feline ADMSCs.

Mesenchymal stem cells and osteogenesis

  • Jung, Cho-Rok;Kiran, Kondabagil R.;Kwon, Byoung S.
    • IMMUNE NETWORK
    • /
    • 제1권3호
    • /
    • pp.179-186
    • /
    • 2001
  • Bone marrow stroma is a complex tissue encompassing a number of cell types and supports hematopiesis, differentiation of erythreid, nyel and lymphoid lineages, and also maintains undifferentiated hematopoietic stem cells. Marrow-derived stem cells were composed of two populations, namely, hematopoietic stem cells that can differentiate into blood elements and mesenchymal stem cells that can give rise to connective tissues such as bone, cartilage, muscle, tendon, adipose and stroma. Differentiation requires environmental factors and unique intracellular signaling. For example, $TGF-{\beta}$ or BMP2 induces osteoblastic differentiation of mesenchymal stem are very exciting. However, the intrinsic controls involved in differentiation of stem cells are yet to be understood properly in order to exploit the same. This review presents an overview of the recent developments made in mesenchymal stem cell research with respect to osteogenesis.

  • PDF

Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

  • Lee, Jun Hee;Han, Yong-Seok;Lee, Sang Hun
    • Biomolecules & Therapeutics
    • /
    • 제24권3호
    • /
    • pp.260-267
    • /
    • 2016
  • Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine.