DOI QR코드

DOI QR Code

Down-Regulation of Sox11 Is Required for Efficient Osteogenic Differentiation of Adipose-Derived Stem Cells

  • Choi, Mi Kyung (Department of Life Science, Ewha Womans University) ;
  • Seong, Ikjoo (Department of Life Science, Ewha Womans University) ;
  • Kang, Seon Ah (Department of Life Science, Ewha Womans University) ;
  • Kim, Jaesang (Department of Life Science, Ewha Womans University)
  • Received : 2014.01.29
  • Accepted : 2014.03.07
  • Published : 2014.04.30

Abstract

Adipose-derived stem cells represent a type of mesenchymal stem cells with the attendant capacity to self-renew and differentiate into multiple cell lineages. We have performed a microarray-based gene expression profiling of osteogenic differentiation and found that the transcription factor Sox11 is down-regulated during the process. Functional assays demonstrate that down-regulation of Sox11 is required for an efficient differentiation. Furthermore, results from forced expression of constitutively-active and dominant-negative derivatives of Sox11 indicate that Sox11 functions as a transcriptional activator in inhibiting osteogenesis. Sox11 thus represents a novel regulator of osteogenesis whose expression and activity can be potentially manipulated for controlled differentiation.

Keywords

References

  1. Alonso, M., Claros, S., Becerra, J., and Andrades, J.A. (2008). The effect of type I collagen on osteochondrogenic differen-tiation in adipose-derived stromal cells in vivo. Cytotherapy 10, 597-610. https://doi.org/10.1080/14653240802242084
  2. Beltrami, A.P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763-776. https://doi.org/10.1016/S0092-8674(03)00687-1
  3. Bergsland, M., Werme, M., Malewicz, M., Perlmann, T., and Muhr, J. (2006). The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev. 20, 3475-3486. https://doi.org/10.1101/gad.403406
  4. Bylund, M., Andersson, E., Novitch, B.G., and Muhr, J. (2003). Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat. Neurosci. 6, 1162-1168. https://doi.org/10.1038/nn1131
  5. Curran, J.M., Chen, R., and Hunt, J.A. (2006). The guidance of human mesenchymal stem cell differentiation in vitro by controlled modifications to the cell substrate. Biomaterials 27, 4783-4793. https://doi.org/10.1016/j.biomaterials.2006.05.001
  6. De Ugarte, D.A., Morizono, K., Elbarbary, A., Alfonso, Z., Zuk, P.A., Zhu, M., Dragoo, J.L., Ashjian, P., Thomas, B., Benhaim, P., et al. (2003). Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174, 101-109. https://doi.org/10.1159/000071150
  7. Gadi, J., Jung, S.H., Lee, M.J., Jami, A., Ruthala, K., Kim, K.M., Cho, N.H., Jung, H.S., Kim, C.H., and Lim, S.K. (2013). The transcription factor protein Sox11 enhances early osteoblast differentiation by facilitating proliferation and the survival of mesenchymal and osteoblast progenitors. J. Biol. Chem. 288, 25400-25413. https://doi.org/10.1074/jbc.M112.413377
  8. Griffiths, M.J., Bonnet, D., and Janes, S.M. (2005). Stem cells of the alveolar epithelium. Lancet 366, 249-260. https://doi.org/10.1016/S0140-6736(05)66916-4
  9. Guntur, A.R., Rosen, C.J., and Naski, M.C. (2012). N-cadherin adherens junctions mediate osteogenesis through PI3K signaling. Bone 50, 54-62. https://doi.org/10.1016/j.bone.2011.09.036
  10. Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57.
  11. Huttunen, M.M., Pekkinen, M., Ahlstrom, M.E., and Lamberg-Allardt, C.J. (2008). Long-term effects of tripeptide Ile-Pro-Pro on osteoblast differentiation in vitro. J. Nutr. Biochem. 19, 708-715. https://doi.org/10.1016/j.jnutbio.2007.09.006
  12. Id Boufker, H., Lagneaux, L., Fayyad-Kazan, H., Badran, B., Najar, M., Wiedig, M., Ghanem, G., Laurent, G., Body, J.J., and Journe, F. (2011). Role of farnesoid X receptor (FXR) in the process of differentiation of bone marrow stromal cells into osteoblasts. Bone 49, 1219-1231. https://doi.org/10.1016/j.bone.2011.08.013
  13. Jiang, Y., Vaessen, B., Lenvik, T., Blackstad, M., Reyes, M., and Verfaillie, C.M. (2002). Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp. Hematol. 30, 896-904. https://doi.org/10.1016/S0301-472X(02)00869-X
  14. Jing, X., Wang, T., Huang, S., Glorioso, J.C., and Albers, K.M. (2012). The transcription factor Sox11 promotes nerve regeneration through activation of the regeneration-associated gene Sprr1a. Exp. Neurol. 233, 221-232. https://doi.org/10.1016/j.expneurol.2011.10.005
  15. Kim, J., Lo, L., Dormand, E., and Anderson, D.J. (2003). SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38, 17-31. https://doi.org/10.1016/S0896-6273(03)00163-6
  16. Kinsella, T.M., and Nolan, G.P. (1996). Episomal vectors rapidly and stably produce high-titer recombinant retrovirus. Hum. Gene Ther. 7, 1405-1413. https://doi.org/10.1089/hum.1996.7.12-1405
  17. Konno, M., Hamabe, A., Hasegawa, S., Ogawa, H., Fukusumi, T., Nishikawa, S., Ohta, K., Kano, Y., Ozaki, M., Noguchi, Y., et al. (2013). Adipose-derived mesenchymal stem cells and regenerative medicine. Dev. Growth Differ. 55, 309-318. https://doi.org/10.1111/dgd.12049
  18. Kuhlbrodt, K., Herbarth, B., Sock, E., Enderich, J., Hermans-Borgmeyer, I., and Wegner, M. (1998). Cooperative function of POU proteins and SOX proteins in glial cells. J. Biol. Chem. 273, 16050-16057. https://doi.org/10.1074/jbc.273.26.16050
  19. Kuznetsov, S.A., Mankani, M.H., Gronthos, S., Satomura, K., Bianco, P., and Robey, P.G. (2001). Circulating skeletal stem cells. J. Cell Biol. 153, 1133-1140. https://doi.org/10.1083/jcb.153.5.1133
  20. Lee, K.E., Nam, S., Cho, E.A., Seong, I., Limb, J.K., Lee, S., and Kim, J. (2008). Identification of direct regulatory targets of the transcription factor Sox10 based on function and conservation. BMC Genomics 9, 408. https://doi.org/10.1186/1471-2164-9-408
  21. McGee-Lawrence, M.E., McCleary-Wheeler, A.L., Secreto, F.J., Razidlo, D.F., Zhang, M., Stensgard, B.A., Li, X., Stein, G.S., Lian, J.B., and Westendorf, J.J. (2011). Suberoylanilide hydroxamic acid (SAHA; vorinostat) causes bone loss by inhibiting immature osteoblasts. Bone 48, 1117-1126. https://doi.org/10.1016/j.bone.2011.01.007
  22. Ory, D.S., Neugeboren, B.A., and Mulligan, R.C. (1996). A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. USA 93, 11400-11406. https://doi.org/10.1073/pnas.93.21.11400
  23. Patel, M.J., Liu, W., Sykes, M.C., Ward, N.E., Risin, S.A., Risin, D., and Jo, H. (2007). Identification of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine. J. Cell Biochem. 101, 587-599. https://doi.org/10.1002/jcb.21218
  24. Pre, D., Ceccarelli, G., Gastaldi, G., Asti, A., Saino, E., Visai, L., Benazzo, F., Cusella De Angelis, M.G., and Magenes, G. (2011). The differentiation of human adipose-derived stem cells (hASCs) into osteoblasts is promoted by low amplitude, high frequency vibration treatment. Bone 49, 295-303. https://doi.org/10.1016/j.bone.2011.04.013
  25. Quan, J.X., Zheng, F., Li, X.X., Hu, L.L., Sun, Z.Y., Jiao, Y.L., and Wang, B.L. (2009). Cloning and analysis of rat os-teoclast inhibitory lectin gene promoter. J. Cell Biochem. 106, 599-607. https://doi.org/10.1002/jcb.22036
  26. Salerno, K.M., Jing, X., Diges, C.M., Cornuet, P.K., Glorioso, J.C., and Albers, K.M. (2012). Sox11 modulates brain-derived neurotrophic factor expression in an exon promoter-specific manner. J. Neurosci. Res. 90, 1011-1019. https://doi.org/10.1002/jnr.23010
  27. Sarkar, A., and Hochedlinger, K. (2013). The sox family of trascription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12, 15-30. https://doi.org/10.1016/j.stem.2012.12.007
  28. Schaffler, A., and Buchler, C. (2007). Concise review: adipose tissue-derived stromal cells--basic and clinical implications for novel cell-based therapies. Stem Cells 25, 818-827. https://doi.org/10.1634/stemcells.2006-0589
  29. Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J., and Elledge, S.J. (2005). A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mam-malian cells. Proc. Natl. Acad. Sci. USA 102, 13212-13217. https://doi.org/10.1073/pnas.0506306102
  30. Sun, S.K., Guo, Z.K., Xiao, X.R., Liu, B., Liu, X.D., Tang, P.H., and Mao, N. (2003). Isolation of mouse marrow mesen-chymal progenitors by a novel and reliable method. Stem Cells 21, 527-535. https://doi.org/10.1634/stemcells.21-5-527
  31. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripo-ent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676. https://doi.org/10.1016/j.cell.2006.07.024
  32. Wagner, W., Wein, F., Seckinger, A., Frankhauser, M., Wirkner, U., Krause, U., Blake, J., Schwager, C., Eckstein, V., An-sorge, W., et al. (2005). Comparative characteristics of mesen- chymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp. Hematol. 33, 1402-1416. https://doi.org/10.1016/j.exphem.2005.07.003
  33. Wilson, M., and Koopman, P. (2002). Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr. Opin. Genet. Dev. 12, 441-446. https://doi.org/10.1016/S0959-437X(02)00323-4
  34. Wissmuller, S., Kosian, T., Wolf, M., Finzsch, M., and Wegner, M. (2006). The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors. Nucleic Acids Res. 34, 1735-1744. https://doi.org/10.1093/nar/gkl105
  35. Yamamoto, N., Akamatsu, H., Hasegawa, S., Yamada, T., Na-ata, S., Ohkuma, M., Miyachi, E., Marunouchi, T., and Matsunaga, K. (2007). Isolation of multipotent stem cells from mouse adipose tissue. J. Dermatol. Sci. 48, 43-52. https://doi.org/10.1016/j.jdermsci.2007.05.015
  36. Zhu, S., Barbe, M.F., Liu, C., Hadjiargyrou, M., Popoff, S.N., Rani, S., Safadi, F.F., and Litvin, J. (2009). Periostin-like-factor in osteogenesis. J. Cell Physiol. 218, 584-592. https://doi.org/10.1002/jcp.21633

Cited by

  1. Regulation of c-Myc Expression by Ahnak Promotes Induced Pluripotent Stem Cell Generation vol.291, pp.2, 2016, https://doi.org/10.1074/jbc.M115.659276
  2. SOXC Genes and the Control of Skeletogenesis vol.14, pp.1, 2016, https://doi.org/10.1007/s11914-016-0296-1
  3. Molecular cloning, characterization and expression of Lc-Sox11a in large yellow croaker Larimichthys crocea vol.574, pp.2, 2015, https://doi.org/10.1016/j.gene.2015.08.021
  4. Characterization of SLC22A18 as a tumor suppressor and novel biomarker in colorectal cancer vol.6, pp.28, 2014, https://doi.org/10.18632/oncotarget.4681
  5. Immunomodulation with Human Umbilical Cord Blood Stem Cells Ameliorates Ischemic Brain Injury - A Brain Transcriptome Profiling Analysis vol.28, pp.7, 2014, https://doi.org/10.1177/0963689719836763
  6. Dynamics of transcriptome changes during subcutaneous preadipocyte differentiation in ducks vol.20, pp.1, 2019, https://doi.org/10.1186/s12864-019-6055-9
  7. Wnt7b-induced Sox11 functions enhance self-renewal and osteogenic commitment of bone marrow mesenchymal stem cells vol.38, pp.8, 2014, https://doi.org/10.1002/stem.3192