DOI QR코드

DOI QR Code

Thymosin Beta4 Regulates Cardiac Valve Formation Via Endothelial-Mesenchymal Transformation in Zebrafish Embryos

  • Shin, Sun-Hye (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University) ;
  • Lee, Sangkyu (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University) ;
  • Bae, Jong-Sup (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University) ;
  • Jee, Jun-Goo (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University) ;
  • Cha, Hee-Jae (Department of Parasitology and Genetics, Kosin University College of Medicine) ;
  • Lee, You Mie (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University)
  • Received : 2014.01.09
  • Accepted : 2014.02.28
  • Published : 2014.04.30

Abstract

Thymosin beta4 (TB4) has multiple functions in cellular response in processes as diverse as embryonic organ development and the pathogeneses of disease, especially those associated with cardiac coronary vessels. However, the specific roles played by TB4 during heart valve development in vertebrates are largely unknown. Here, we identified a novel function of TB4 in endothelial-mesenchymal transformation (EMT) in cardiac valve endocardial cushions in zebrafish. The expressions of thymosin family members in developing zebrafish embryos were determined by whole mount in situ hybridization. Of the thymosin family members only zTB4 was expressed in the developing heart region. Cardiac valve development at 48 h post fertilization was defected in zebrafish TB4 (zTB4) morpholino-injected embryos (morphants). In zTB4 morphants, abnormal linear heart tube development was observed. The expressions of bone morphogenetic protein (BMP) 4, notch1b, and hyaluronic acid synthase (HAS) 2 genes were also markedly reduced in atrio-ventricular canal (AVC). Endocardial cells in the AVC region were stained with anti-Zn5 antibody reactive against Dm-grasp (an EMT marker) to observe EMT in developing cardiac valves in zTB4 morphants. EMT marker expression in valve endothelial cells was confirmed after transfection with TB4 siRNA in the presence of transforming growth factor ${\beta}$ ($TGF{\beta}$) by RT-PCR and immunofluorescent assay. Zn5-positive endocardial AVC cells were not observed in zTB4 morphants, and knockdown of TB4 suppressed TGF-${\beta}$-induced EMT in ovine valve endothelial cells. Taken together, our results demonstrate that TB4 plays a pivotal role in cardiac valve formation by increasing EMT.

Keywords

References

  1. Armstrong, E.J., and Bischoff, J. (2004). Heart valve development: endothelial cell signaling and differentiation. Circ. Res. 95, 459-470. https://doi.org/10.1161/01.RES.0000141146.95728.da
  2. Bakkers, J. (2011). Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 91, 279-288. https://doi.org/10.1093/cvr/cvr098
  3. Bakkers, J., Verhoeven, M.C., and Abdelilah-Seyfried, S. (2009). Shaping the zebrafish heart: from left-right axis specification to epithelial tissue morphogenesis. Dev. Biol. 330, 213-220. https://doi.org/10.1016/j.ydbio.2009.04.011
  4. Beis, D., Bartman, T., Jin, S.W., Scott, I.C., D'mico, L.A., Ober, E.A., Verkade, H., Frantsve, J., Field, H.A., Wehman, A., et al. (2005). Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development 132, 4193-4204. https://doi.org/10.1242/dev.01970
  5. Bock-Marquette, I., Saxena, A., White, M.D., DiMaio, J.M., and Srivastava, D. (2004). Thymosin ${\beta}4$ activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432, 466-472. https://doi.org/10.1038/nature03000
  6. Bock-Marquette, I., Shrivastava, S., Pipes, G., Thatcher, J.E., Blystone, A., Shelton, J.M., Galindo, C.L., Melegh, B., Srivastava, D., and Olson, E.N. (2009). Thymosin ${\beta}4$ mediated PKC activation is essential to initiate the embryonic coronary developmental program and epicardial progenitor cell activation in adult mice in vivo. J. Mol. Cell. Cardiol. 46, 728-738. https://doi.org/10.1016/j.yjmcc.2009.01.017
  7. Derynck, R., and Zhang, Y.E. (2003). Smad-dependent and Smadindependent pathways in TGF-beta family signalling. Nature 425, 577-584. https://doi.org/10.1038/nature02006
  8. Dube, K.N., Bollini, S., Smart, N., and Riley, P.R. (2012). Thymosin beta4 protein therapy for cardiac repair. Curr. Pharm. Des. 18, 799-806. https://doi.org/10.2174/138161212799277699
  9. Goldstein, A.L., Hannappel, E., Sosne, G., and Kleinman, H.K. (2012). Thymosin ${\beta}4$: a multi-functional regenerative peptide. Basic properties and clinical applications. Exp. Opin. Biol. Ther. 12, 37-51. https://doi.org/10.1517/14712598.2012.634793
  10. Gomez-Marquez, J., Franco del Amo, F., Carpintero, P., and Anadon, R. (1996). High levels of mouse thymosin ${\beta}4$ mRNA in differentiating P19 embryonic cells and during evelopment of cardiovascular tissues. Biochim. Biophys. Acta 1306, 187-193. https://doi.org/10.1016/0167-4781(96)00003-6
  11. Huang, C.J., Tu, C.T., Hsiao, C.D., Hsieh, F.J., and Tsai, H.J. (2003). Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Dev. Dyn. 228, 30-40. https://doi.org/10.1002/dvdy.10356
  12. Huff, T., Muller, C.S., Otto, A.M., Netzker, R., and Hannappel, E. (2001). ${\beta}$-Thymosins, small acidic peptides with multiple functions. Int. J. Biochem. Cell Biol. 33, 205-220. https://doi.org/10.1016/S1357-2725(00)00087-X
  13. Jang, G.H., Park, I.S., Yang, J.H., Bischoff, J., and Lee, Y.M. (2010). Differential functions of genes regulated by VEGF-NFATc1 signaling pathway in the migration of pulmonary valve endothelial cells. FEBS Lett. 584, 141-146. https://doi.org/10.1016/j.febslet.2009.11.031
  14. Ji, Y.I., Lee, B.Y., Kang, Y.J., Jo, J.O., Lee, S.H., Kim, H.Y., Kim, Y.O., Lee, C., Koh, S.B., Kim, A., et al. (2013). Expression patterns of Thymosin ${\beta}4$ and cancer stem cell marker CD133 in ovarian cancers. Pathol. Oncol. Res. 19, 237-245. https://doi.org/10.1007/s12253-012-9574-0
  15. Jin, S.W., Beis, D., Mitchell, T., Chen, J.N., and Stainier, D.Y.R. (2005). Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132, 5199-5209. https://doi.org/10.1242/dev.02087
  16. Johnson, E.N., Lee, Y.M., Sander, T.L., Rabkin, E., Schoen, F.J., Kaushal, S., and Bischoff, J. (2003). NFATc1 mediates vascular endothelial growth factor-induced proliferation of human pulmonary valve endothelial cells. J. Biol. Chem. 278, 1686-1692. https://doi.org/10.1074/jbc.M210250200
  17. Kim, S.H., Shin, J., Park, H.C., Yeo, S.Y., Hong, S.K., Han, S., Rhee, M., Kim, C.H., Chitnis, A.B., and Huh, T.L. (2002). Specification of an anterior neuroectoderm patterning by Frizzled8a-mediated Wnt8b signalling during late gastrulation in zebrafish. Development 129, 4443-4455.
  18. Lee, Y.M., Cope, J.J., Ackermann, G.E., Goishi, K., Armstrong, E.J., Paw, B.H., and Bischoff, J. (2006). Vascular endothelial growth factor receptor signaling is required for cardiac valve formation in zebrafish. Dev. Dyn. 235, 29-37. https://doi.org/10.1002/dvdy.20559
  19. Lee, S.I., Kim, D.S., Lee, H.J., Cha, H.J., and Kim, E.C. (2013). The role of thymosin beta 4 on odontogenic differentiation in human dental pulp cells. PLoS One 8, e61960. https://doi.org/10.1371/journal.pone.0061960
  20. Li, Q., Jones, P., Lafferty, R., Safer, D., and Levy, R. (2002). Thymosin beta4 regulation, expression and function in aortic valve interstitial cells. J. Heart Valve Dis. 11, 726-735.
  21. Malinda, K., Goldstein, A., and Kleinman, H. (1997). Thymosin beta 4 stimulates directional migration of human umbilical vein endothelial cells. FASEB J. 11, 474-481.
  22. Malinda, K.M., Sidhu, G.S., Mani, H., Banaudha, K., Maheshwari, R.K., Goldstein, A.L., and Kleinman, H.K. (1999). Thymosin ${\beta}4$ accelerates wound healing. J. Invest. Dermatol. 113, 364-368. https://doi.org/10.1046/j.1523-1747.1999.00708.x
  23. Markwald, R.R., Fitzharris, T.P., and Manasek, F.J. (1977). Structural development of endocardial cushions. Am. J. Anat. 148, 85-119. https://doi.org/10.1002/aja.1001480108
  24. Milan, D.J., Giokas, A.C., Serluca, F.C., Peterson, R.T., and MacRae, C.A. (2006). Notch1b and neuregulin are required for specification of central cardiac conduction tissue. Development 133, 1125-1132. https://doi.org/10.1242/dev.02279
  25. Paranya, G., Vineberg, S., Dvorin, E., Kaushal, S., Roth, S.J., Rabkin, E., Schoen, F.J., and Bischoff, J. (2001). Aortic valve endothelial cells undergo transforming growth factor-beta-mediated and non-transforming growth factor-beta-mediated transdifferentiation in vitro. Am. J. Pathol. 159, 1335-1343. https://doi.org/10.1016/S0002-9440(10)62520-5
  26. Smart, N., Risebro, C.A., Melville, A.A., Moses, K., Schwartz, R.J., Chien, K.R., and Riley, P.R. (2006). Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445, 177-182.
  27. Smart, N., Bollini, S., Dube, K.N., Vieira, J.M., Zhou, B., Davidson, S., Yellon, D., Riegler, J., Price, A.N., and Lythgoe, M.F. (2011). De novo cardiomyocytes from within the activated adult heart after injury. Nature 474, 640-644. https://doi.org/10.1038/nature10188
  28. Sosne, G., Szliter, E.A., Barrett, R., Kernacki, K.A., Kleinman, H., and Hazlett, L.D. (2002). Thymosin beta 4 promotes corneal wound healing and decreases inflammation in vivo following alkali injury. Exp. Eye Res. 74, 293-299. https://doi.org/10.1006/exer.2001.1125
  29. Sosne, G., Xu, L., Prach, L., Mrock, L.K., Kleinman, H.K., Letterio, J.J., Hazlett, L.D., and Kurpakus-Wheater, M. (2004). Thymosin beta 4 stimulates laminin-5 production independent of TGF-beta. Exp. Cell Res. 293, 175-183. https://doi.org/10.1016/j.yexcr.2003.09.022
  30. Sribenja, S., Wongkham, S., Wongkham, C., Yao, Q., and Chen, C. (2013). Roles and mechanisms of ${\beta}$-thymosins in cell migration and cancer metastasis: an update. Cancer Invest. 31, 103-110. https://doi.org/10.3109/07357907.2012.756111
  31. Stainier, D.Y., Beis, D., Jungblut, B., and Bartman, T. (2002). Endocardial cushion formation in zebrafish. Cold Spring Harb. Symp. Quant. Biol. 67, 49-56.
  32. Stankunas, K., Ma, G.K., Kuhnert, F.J., Kuo, C.J., and Chang, C.P. (2010). VEGF signaling has distinct spatiotemporal roles during heart valve development. Dev. Biol. 347, 325-336. https://doi.org/10.1016/j.ydbio.2010.08.030
  33. Thatcher, J.E., Welch, T., Eberhart, R.C., Schelly, Z.A., and Michael DiMaio, J. (2012). Thymosin ${\beta}4$ sustained release from poly (lactide-co-glycolide) microspheres: synthesis and implications for treatment of myocardial ischemia. Ann. N Y Acad. Sci. 1270, 112-119. https://doi.org/10.1111/j.1749-6632.2012.06681.x
  34. Westerfield, M. (1993). The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio), (University of Oregon Press, USA).
  35. Yang, J.H., Wylie-Sears, J., and Bischoff, J. (2008). Opposing actions of Notch1 and VEGF in post-natal cardiac valve endothelial cells. Biochem. Biophys. Res. Commun. 374, 512-516. https://doi.org/10.1016/j.bbrc.2008.07.057
  36. Yelon, D., Horne, S.A., and Stainier, D.Y. (1999). Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. Dev. Biol. 214, 23-37. https://doi.org/10.1006/dbio.1999.9406

Cited by

  1. Temporal cohesion of the structural, functional and molecular characteristics of the developing zebrafish heart vol.89, pp.5, 2015, https://doi.org/10.1016/j.diff.2015.05.001
  2. Generation of cardiac progenitor cells through epicardial to mesenchymal transition vol.93, pp.7, 2015, https://doi.org/10.1007/s00109-015-1290-2
  3. Thymosin β4 is involved in the antimicrobial immune response of Golden pompano, Trachinotus ovatus vol.69, 2017, https://doi.org/10.1016/j.fsi.2017.08.006
  4. Thymosin β4-mediated protective effects in the heart vol.18, pp.sup1, 2018, https://doi.org/10.1080/14712598.2018.1490409
  5. Landscape limits gene flow and drives population structure in Agassiz’s desert tortoise (Gopherus agassizii) vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-29395-6
  6. Functional Role of Non-Coding RNAs during Epithelial-To-Mesenchymal Transition vol.4, pp.2, 2014, https://doi.org/10.3390/ncrna4020014
  7. Tβ4-Ac-SDKP pathway: Any relevance for the cardiovascular system? vol.97, pp.7, 2014, https://doi.org/10.1139/cjpp-2018-0570
  8. Multiple functions of thymosin β4 in the pearl oyster Pinctada fucata suggest its multiple potential roles in artificial pearl culture vol.103, pp.None, 2014, https://doi.org/10.1016/j.fsi.2020.04.040
  9. Utilizing Developmentally Essential Secreted Peptides Such as Thymosin Beta-4 to Remind the Adult Organs of Their Embryonic State-New Directions in Anti-Aging Regenerative Therapies vol.10, pp.6, 2014, https://doi.org/10.3390/cells10061343
  10. Bioengineering strategies to control epithelial-to-mesenchymal transition for studies of cardiac development and disease vol.5, pp.2, 2014, https://doi.org/10.1063/5.0033710