• Title/Summary/Keyword: adhesive bond

Search Result 759, Processing Time 0.024 seconds

THE STUDY ON THE MICROLEAKAGE PATTERN OF FLOWABLE COMPOSITE RESIN RESTORATIONS ACCORDING TO THE TYPE OF ADHESIVE MATERIALS (접착제에 따른 유동성 복합 레진 수복물의 미세누출 양상에 관한 연구)

  • Park, Ji-Eun;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.3
    • /
    • pp.456-468
    • /
    • 2008
  • This study was performed to evaluate the quality of newly offered dentin bonding system($AdheSE^{(R)}$ One) by comparing the degree of microleakage measured with those of several conventional adhesive materials(AQ Bond Plus and $Adper^{TM}$ Single Bond 2). The quality of hybrid layer and resin tags was analyzed by observing restoration/ tooth interface under SEM. All-in-one system is in the limelight for having advantage of reducing chair time of children with difficult behavior pattern. Therefore the possibility of clinical application of All-in-one system was evaluated. The results obtained are as follows; 1. At the enamel margin, group II(AQ Bond Plus) showed the highest value of microleakage, and the other groups showed decreased value in order of group III($AdheSE^{(R)}$ One) and I($Adper^{TM}$ Single Bond 2). There was statistically significant difference between group II and the others(p<0.05), and no statistical difference was found between group I and III. 2. At the dentin margin, microleakage value was increased in order of group II, I, III and significant difference between all groups(p<0.05). 3. In group I and III, microleakage value measured at the enamel margin was significantly lower than that seen at the dentin margin(p<0.05), and there was no statistical difference in group II. 4. Resin tags observed under SEM were very weak and tangled in group II and III while the strong and thick tags were observed in group I. In conclusion, careful case selection and accurate clinical application is recommended in using AQ Bond Plus and $AdheSE^{(R)}$ One, giving consideration of the results showing its higher microleakage and weaker strength than $Adper^{TM}$ Single Bond 2.

  • PDF

A STUDY OF ADDITIONAL VIBRATION EFFECT ON DENTIN BOND STRENGTH (진동이 상아질 결합력에 미치는 영향에 관한 연구)

  • Lee, Jin;Kim, Jung-Wook;Lee, Sang-Hoon;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.4
    • /
    • pp.632-640
    • /
    • 2002
  • The objective of the study was to apply the vibration technique to reduce the viscosity of bonding adhesives and thereby compare the bond strength and resin penetration into dentinal tubules achieved with those gained using the conventional technique. Eighty-eight noncarious extracted human permanent molar teeth were sectioned to remove the coronal enamel and were embedded in 1-inch PVC pipe with acrylic resin. The occlusal surfaces were placed so that the tooth and the embedding medium were at the same level to form one flat surface, and the samples were subsequently polished with silicon carbide abrasive papers. The samples were randomly assigned to 4 groups(n=22). On Group 1 and 2, Single Bond(3M-ESPE, St. Paul, USA) was used, and on Group 3 and 4, One-Step(Bisco Inc., Schaumburg, USA) was used, and each was applied according to its manufacturer's instructions. For Group 2 and Group 4, vibration was applied with ultrasonic scaler for 10 seconds, and the adhesive was light-cured for 10 seconds. Resin composite was condensed on to the prepared surface in two increments using a mold kit(Ultradent Products Inc., USA) and each was light-cured for 40 seconds. After 24 hours in tap water at room temperature the specimens were thermocycled, and shear bond strengths were measured with a universal testing machine(Instron 4465, Canton, USA). To investigate infiltration patterns of the adhesive materials, the surface of specimen was examined with scanning electron microscope. The results were as follows. 1. The shear bond strengths of vibration groups(Group 2, Group 4) were significantly greater than those of the non-vibration groups(Group 1, Group 3)(p<0.05). 2. The shear bond strengths of Single Bond and One-Step were not significantly different (p>0.05). 3. The vibration groups showed greater number of resin tags in tubules and lateral branches under SEM.

  • PDF

A COMPARATIVE STUDY ON THE SHEAR BOND STRENGTH OF DICOR AND G-CERA PORCELAIN LAMINATE VENEER (DICOR와 G-CERA PORCELAIN LAMINATE VENEER의 전단결합강도에 관한 비교연구)

  • Cho Mi-Sook;Yang Jae-Ho;Lee Sun-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.33-41
    • /
    • 1991
  • Cermic has been widely used because of its excellent esthetics and strength. The recently introduced castable ceramic system is regarded as the more esthetic and biocompatible restorative material. The purpose of this study was to compare the shear bond strength of Dicer & G-Cera porcelain laminate veneer according to the type of cement and surface treatment and to observe the surface of bonding failure with SEM. Total forty disks(3.5mm $diam.\times2.0mm$ thickness) were prepared. Forty extracted human maxillary central incisor teeth were stored in saline solution. Ten teeth were bonded to Dicer specimen with Dicer ZPC cement and ten teeth were bonded with Dicer resin cement. Ten silicoated G-Cera specimen and ten non-silicoated G-Cera specimen were bonded to teeth with G-Cera resin cement. Bonded units were mounted in a plastic tube with hard stone and stored in a humidor at $37^{\circ}C$ for 24 hours. Shear bond strength was measured by Instron Universal Testing Machine (Model 1125) and all the specimen were observed with SEM(JEOL, JSM-T2000)and modes of failure were recorded. The obtained results were as follows: 1. The mean shear bond strength of Dicer bonded with Dicer resin cement was 11.62 MPa and that bonded with Dicor ZPC cement was 0.88 MPa : Shear bond strength of Dicer bonded with Dicer resin cement was significantly increased(P<0.05). 2. The mean shear bond strength of silicoated G-Cera was 13.10 MPa and that of non silicoated G-Cera was 10.93 MPa : Shear bond strength of silicoated G-Cera was not significantly increased (P>0.05). 3. Shear bond strength of Dicer and G-Cera porcelain laminate veneer was not significantly different (P>0.05). 4. In observation of bond failure with SEM, Dicer bonded with Dicer ZPC cement exhibited adhesive failure. Dicer bonded with Dicer resin cement and silicoated and non silicoated G-Cera exhibited cohesive failure.

  • PDF

The effect of different bonding systems on shear bond strength of repaired composite resin (접착 시스템이 수리된 복합 레진의 전단 결합 강도에 미치는 영향)

  • Seon, Eun-Mi;Kim, Hyeon-Cheol;Hur, Bock;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.125-132
    • /
    • 2008
  • The purpose of this study is to compare the shear bond strength of repaired composite resin with different bonding agents and evaluate the effect of bonding agents on composite repair strength. Forty composite specimens (Z-250) were prepared and aged for 1 week by thermo cycling between 5 and $55^{\circ}C$ with a dwell time of 30s. After air abrasion with $50\;{\mu}m$ aluminum oxide, following different bonding agents were applied (n = 10); SB group: Scotchbond multipurpose adhesive (3 step Total-Etch system); XE group: Clearfil SE bond (2 step Self-Etch system); XP group: XP bond (2 step Total-Etch system); XE group: Xeno III (1 step Self-Etch system). After bonding procedure was completed, new composite resin (Z-250) was applied to the mold and cured. For control group. 10 specimens were prepared. Seven days after repair, shear bond strength was measured. Data was statistically analyzed using one-way ANOVA and Tukey's test (p<0.05). The means and standard deviations of shear bond strength (MPa ${\pm}$ S.D.) per group were as follows: SB group: 17.06; SE group: 19.10; XP group: 14.44; XE group: 13.57; Control Group: 19.40. No significant difference found in each group. Within the limit of this study, it was concluded that the different type of bonding system was not affect on the shear bond strength of repaired composite resin.

The effect of additional etching and curing mechanism of composite resin on the dentin bond strength

  • Lee, In-Su;Son, Sung-Ae;Hur, Bock;Kwon, Yong-Hoon;Park, Jeong-Kil
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.4
    • /
    • pp.479-484
    • /
    • 2013
  • PURPOSE. The aim of this study was to evaluate the effects of additional acid etching and curing mechanism (light-curing or self-curing) of a composite resin on the dentin bond strength and compatibility of one-step self-etching adhesives. MATERIALS AND METHODS. Sixteen human permanent molars were randomly divided into eight groups according to the adhesives used (All-Bond Universal: ABU, Clearfil S3 Bond: CS3), additional acid etching (additional acid etching performed: EO, no additional acid etching performed: EX), and composite resins (Filtek Z-250: Z250, Clearfil FII New Bond: CFNB). Group 1: ABU-EO-Z250, Group 2: ABU-EO-CFNB, Group 3: ABU-EX-Z250, Group 4: ABU-EX-CFNB, Group 5: CS3-EO-Z250, Group 6: CS3-EO-CFNB, Group 7: CS3-EX-Z250, Group 8: CS3-EX-CFNB. After bonding procedures, composite resins were built up on dentin surfaces. After 24-hour water storage, the teeth were sectioned to make 10 specimens for each group. The microtensile bond strength test was performed using a microtensile testing machine. The failure mode of the fractured specimens was examined by means of an optical microscope at ${\times}20$ magnification. The data was analyzed using a one-way ANOVA and Scheffe's post-hoc test (${\alpha}$=.05). RESULTS. Additional etching groups showed significantly higher values than the no additional etching group when using All-Bond Universal. The light-cured composite resin groups showed significantly higher values than the self-cured composite resin groups in the Clearfil S3 Bond. CONCLUSION. The additional acid etching is beneficial for the dentin bond strength when using low acidic one-step self-etch adhesives, and low acidic one-step self-etch adhesives are compatible with self-cured composite resin. The acidity of the one-step self-etch adhesives is an influencing factor in terms of the dentin bonding strength and incompatibility with a self-cured composite resin.

THE INFLUENCE OF SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH OF RESIN CEMENTS TO IN-CERAM CORE (In-Ceram 코아의 표면처리 방법에 따른 레진시멘트와의 전단결합강도에 관한 연구)

  • Yoon, Jeong-Tae;Lee, Sun-Hyung;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.129-146
    • /
    • 2000
  • An increasing demand for esthetic restorations has led to the development of new ceramic systems. In-Ceram, a glass-infiltrated alumina ceramic has three to few times greater flexural strength than other ceramic glass material. Because of its high strength, In-Ceram has been suggested as inlay, crown, laminate veneer and core material for resin bonded fixed partial dentures. This clinical application requires a stable resin bond to In-Ceram core. The purpose of this study was to evaluate the shear bond strength between In-Ceram core and resin cements according to various surface treatments and storage conditions. The surface of each In-Ceram core sample was subjected to one of the following treatments and then bonded to Panavia 21 or Variolink II resin cement. ; (1) sandblasting with $110{\mu}m$ aluminum oxide powder, (2) sandblasting and silanization, (3) sandblasting and Siloc treatment, (4) sandblasting and Targis link application. Each of eight bonding groups was tested in shear bond strengths after the following storage times and thermocycling. ; A) 24 hours storage in distilled water at $37^{\circ}C$, B) 5 weeks storage in distilled water at $37^{\circ}C$ C) 5 weeks storage in distilled water at $37^{\circ}C$ and thermocycled 2,000 thormocycling for every 10 days(totally 10,000 thermocycting) in $5^{\circ}C-55^{\circ}C$ bath. The bond failure modes were observed with scanning electron microscope(SEM). The results were as fellows : 1 The shear bond strengths of sandblasting group were significantly lesser than the other groups after 24 hours water storage. No significant difference of bonding strengths was found between storage time conditions(24 hours and 5 weeks). The shear bond strengths showed a tendency to decrease in Variolink II bonding groups and to increase in Panavia 21 bonding groups. 3. After thermocycling, the shear bond strengths of all groups were significantly decreased(p<0.01) and Targis link group exhibited significantly greater strengths than the other groups(p<0.05). 4. Panavia 21 bonding groups exhibited significantly greater bonding strengths in sandblasting group(p<0.01) and silane group(p<0.05) than Variolink II bonding groups. 5. In observation of bond failure modes, Targis link group showed cohesive failure in resin part and silane group and Siloc group showed complex failure and sandblasting group showed adhesive failure between In-Ceram and resin.

  • PDF

EFFECT OF ETCHING TIME ON SHEAR BOND STRENGTH OF RESIN CEMENTS TO REINFORCED ALL-CERAMIC CROWNS (불산 처리 시간이 강화형 전부도재관과 레진 시멘트의 전단 결합강도에 미치는 영향)

  • Kim Kyoung-Il;Choi Keun-Bae;Ahn Seung-Geun;Park Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.5
    • /
    • pp.501-513
    • /
    • 2004
  • Purpose : The purpose of this study was to evaluate the effects of etching time on shear bond strength of four resin cements to IPS Empress 2 ceramic. Material and Methods: Forty rectangular shape ceramic specimens ($10{\times}15{\times}3.5mm$ size) were used for this study. The ceramic specimens divided into four groups and were etched with 10% hydrofluoric acid for 0, 10, 30, 60, 180, 300, 420, 600, and 900 seconds respectively. Etched surfaces of ceramic specimens were coated with ceramic adhesive system and bonded with four resin cement (Variolink II, Panavia F, Panavia 21, Super-Bond C&B) using acrylic glass tube. All cemented specimens were tested under shear loading untill fracture on universal testing machine at a crosshead speed 1mm/min: the maximum load at fracture (kg) was recored. Shear bond strengh data were analyzed with oneway analysis of variance and Tukey HSD tests (p<.05). Etched ceramic surfaces (0-, 60-, 300-, and 600-seconds etching period) and fracture surfaces after shear testing were examined mophologically using scanning electron microscopy. Results : Ceramic surface treatment with 10% hydrofluoric acid improved the bond strength of three resin cement except for Super-Bond C&B cement. Variolink II (41.0$\pm$2.4 MPa) resin cement at 300-seconds etching time showed statistically higher shear bond strength than the other resin cements (Panavia F: 28.3$\pm$2.3 MPa, Panavia 21: 21.5$\pm$2.2 MPa, Super-Bond C&B: 16.7$\pm$1.6 MPa). Ceramic surface etched with 10% hydrofluoric acid for 300 seconds showed more retentive surface texture. Conclusion: Within the limitation of this study, Variolink II resin cement are suitable for cementation of Empress 2 all-ceramic restorations and etching with 10% hydrofluoric acid for 180 to 300 seconds is required to enhance the bond strength.

SHEAH BOND STRENGTH OF VENEERING CERAMIC TO ELECTROFORMED GOLD WITH THREE DIFFERENT SURFACE TREATMENT (표면처리방법에 따른 전기성형금속의 도재결합강도)

  • Kim Cheol;Lim Jang-Seop;Jeon Young-Chan;Jeong Chang-Mo;Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.5
    • /
    • pp.599-610
    • /
    • 2005
  • Purpose: The success of the bonding between electroformed gold and ceramic is dependent on the surface treatment of the pure gold coping. The purpose of this study was to evaluate the bonding strength between the electroformed gold and ceramic with varying surface treatment. Materials and methods: A total of 32 disks,8 were using conventional ceramometal alloy, 24 were using electroforming technique as recommended by manufacturer, were prepared. 24 electroformed disks were divided 3 groups according to surface treatment, i.e. 50 microns aluminium oxide sandblasting(GES-Sand), gold bonder treatment(GES-Bond) and $Rocatec^{TM}$ system(GES-Rocatec). For control group of conventional alloy 50 microns aluminium oxide treatment was done(V-Supragold). Energy dispersive x-ray analysis and scanning electron microscope image were observed. Using universal testing machine, shear bond strength and bonding failure mode at metal-porcelain interface were measured. Results and Conclusion: The following conclusions were drawn: 1. In the energy dispersive x-ray analysis, the Au was main component in electroformed gold(99.9wt%). After surface treatment, a little amount of $Al_2O_3(2.4wt%)$ were found in GES-Sand, and $SiO_2(4wt%)$ in GES-Bond. In GES-Rocatec, however, a large amount of $SiO_2(17.4wt%)$ were found. 2. In the scanning electron microscopy, similar pattern of surface irregu larities were observed in V-Supragold and GES-Sand. In GES-Bond, surface irregularities were increased and globular ceramic particles were observed. In GES-Rocatec, a large amount of silica particles attached to metal surface with increased surface irregularities were observed. 3. The mean shear bond strength values(MPa) in order were $22.9{\pm}3.7(V-Supragold),\;22.1{\pm}3.8(GES-Bond),\;20.1{\pm}2.8(GES-Rocatec)\;and\;13.0{\pm}1.4(GES-Sand)$. There was no significant difference between V-Supragold, GES-Bond, and GES-Rocatec. (P>0.05) 4. Most bonding failures modes were adhesive type in GES-Sand. However, in V-Supragold, GES-Bond and GES-Rocatec, cohesive and combination failures were commonly observed. From the result, with proper surface treatment method electroformed gold may have enough strength compare to conventional ceramometal alloy.

Modified laser etching technique of enamel for bracket bonding (브라켓 부착을 위한 변형된 레이저 부식법)

  • Yun, Min-Sung;Lee, Sang-Min;Yang, Byung-Ho
    • The korean journal of orthodontics
    • /
    • v.40 no.2
    • /
    • pp.87-94
    • /
    • 2010
  • Objective: Many studies have carried out research on comparisons between laser etching and conventional etching systems to investigate methods of reinforcing shear bond strength. The purposes of this study were to assess the efficiency of bonding with erbium, chromium doped: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser etching combined with the conventional etching technique. Methods: Sixty-four sound premolars, extracted for orthodontic purposes, were randomly divided into 4 groups and treated in the following manner. First group, conventional etching of 37% phosphoric acid for 15 seconds (control); second group, 1.5 W laser etching for 10 seconds followed by conventional etching; third group, conventional etching followed by 1.5 W laser etching; fourth group, 1.5 W laser etching for 15 seconds only. We assessed the shear bond strength, the surface characteristics, and the adhesive remnant index scores between all groups. Results: Experimental groups showed higher shear bond strength than the control group. But no statistically significant differences were found between the second and third groups. Adhesive remnant scores were compared with the Kruskal-Wallis test, and no statistically significant differences were found between all groups. Conclusions: To obtain maximum shear bonding strength, a combined technique of Er,Cr:YSGG and 37% phosphoric acid is useful even though it may be inconvenient.

DEVELOPMENT OF NANO-FLUID MOVEMENT MEASURING DEVICE AND ITS APPLICATION TO HYDRODYNAMIC ANALYSIS OF DENTINAL FLUID (미세 물 흐름 측정장치의 개발과 상아세관액의 수력학에의 응용)

  • Lee, In-Bog;Kim, Min-Ho;Kim, Sun-Young;Chang, Ju-Hea;Cho, Byung-Hoon;Son, Ho-Hyun;Back, Seung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.141-147
    • /
    • 2008
  • This study was aimed to develop an instrument for real-time measurement of fluid conductance and to investigate the hydrodynamics of dentinal fluid. The instrument consisted of three parts; (1) a glass capillary and a photo sensor for detection of fluid movement, (2) a servo-motor, a lead screw and a ball nut for tracking of fluid movement, (3) a rotary encoder and software for data processing. To observe the blocking effect of dentinal fluid movement, oxalate gel and self-etch adhesive agent were used. BisBlock (Bisco) and Clearfil SE Bond (Kuraray) were applied to the occlusal dentin surface of extracted human teeth. Using this new device, the fluid movement was measured and compared between before and after each agent was applied. The instrument was able to measure dentinal fluid movement with a high resolution (0.196 nL) and the flow occurred with a rate of 0.84 to 15.2 nL/s before treatment. After BisBlock or Clearfil SE Bond was used, the fluid movement was decreased by 39.8 to 89.6%.