• Title/Summary/Keyword: adhesion energy

Search Result 562, Processing Time 0.027 seconds

Adhesion and Lifetime Extension Properties of Electrical Conductive Paint Stored under of Nitrogen Atmosphere (질소환경에서 보관된 전기전도성 페인트의 접착 및 수명연장 특성)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • The change of three different reagents for electrical conductive paint using aircraft coating with elapsing time of exposure to different condition was investigated. Three different reagents were poured into the vial bottles, stored in air condition and room temperature and observed with elapsing days. In addition, adhesion property of paint was tried using cross cut tape test after storage of $N_2$ atmosphere. The weight of each different reagent was measured along with elapsing time. To confirm the change of chemical component with exposure of air atmosphere, FT-IR was performed. The weight of part A and Part B decreased slightly whereas the weight of part C decreased rapidly and the precipitation was remained. The part B was cured after exposure of $N_2$ atmosphere and the 2250 cm-1 from FT-IR peak decreased slowly at the same time. It was considered that the water contained in air accelerated the reaction of -NCO functional groups and it caused the curing whereas $N_2$ atmosphere not contained water and it resulted in the retardancy of curing.

Surface Energy of Graphene Transferred by Wet and Dry Transfer Methods (전사 방법에 따른 그래핀의 표면 에너지 변화)

  • Yoon, Min-Ah;Kim, Chan;Won, Sejeong;Jung, Hyun-June;Kim, Jae-Hyun;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • Graphene is a fascinating material for fabricating flexible and transparent devices owing to its thickness and mechanical properties. To utilize graphene as a core material for devices, the transfer process of graphene is an inevitable step. The transfer process can be classified into wet and dry methods depending on the surrounding environment. The adhesion between graphene and a target substrate determines the success or failure of the transfer process. As the surface energy of graphene is an important parameter that provides adhesion, it is useful to estimate the surface energy to understand the mechanisms of the transfer process. However, the exact surface energy of graphene is still disputed because the wetting transparency of graphene depends on the polarity of the liquid and target substrate. Previously reported results use graphene transferred by the wet method. However, there are few reports on the surface energy of graphene transferred by the dry method. In this study, the surface energy of graphene transferred by the wet and dry methods is estimated. Wetting transparency occurs for certain combinations of liquids and substrates. For graphene on a polar substrate, the surface energy decreases by 25 and 35% for the wet and dry transfer methods, respectively. However, the surface energy of graphene on dispersive substrates decreases by ~10% regardless of the transfer method. In conclusion, the surface energy of graphene is $36{\sim}38mJ/m^2$, and differs depending on the transfer method and polarity of the substrate.

Effect of protective colloid on the synthesis of Poly(Vinyl acetate-co-Ethyl acrylate) (Poly(VAc-co-EA) 공중합체 제조에 있어 보호콜로이드의 영향에 관한 연구)

  • Kim, Nam-Seok;Kim, Sung-Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.216-221
    • /
    • 2010
  • Polyvinyl acetate (PVAc) prepared by emulsion polymerization has broad applications for additive such as paint binder, adhesive for wood and paper due to its low glass transition temperature which help to plasticize substrate resins. Since emulsion polymerization has a disadvantage that surfactant and ionic initiator degrade properties of the product polymer, poly (vinyl acetate-eo-ethyl acrylate) (VAc-EA) was synthesized using potassium persulfate as catalyst and polyvinylalcohol (PVA) as protective colloid to prevent the degradation. The copolymer latex product was internally plasticized and has enhanced adhesion, water resistance during VAc-EA emulsion polymerization. No coagulation and complete conversion occur with the reactant mixture of 10 mmol/L potassium persulfate, 10 mmol/L poly ( vinyl alcohol) (PVA 17). As the concentrations of PVA increase, the viscosity becomes increase.

광반응 폴리이미드위에 RF bias sputtering 방식으로 증착된 Cr의 접착력에 관한 연구

  • 김선영;김영호;윤종승
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.171-177
    • /
    • 2001
  • The adhesion enhancement from inserting a RF bias-sputtered Cr layer between Cu and polyimide (PI) has been studied. The RF bias power applied in this study was ranged from 0 to 400 W. Without the RF bias, the peel strength, which measures the adhesion strength, was nearly o g/mm. As the RF power was increased, the peel strength rose up to ~130 g/mm at 200 W, which remained constant with further increase of the RF bias power. Cross-sectional transmission electron microscopy(TEM) was used to investigate the interfacial reaction between the Cr film and PI substrate during the bias sputtering. The Cr/PI interface without the application of RF dais showed a clean, sharp interface while the RF raised Cr/PI interface had about 10~30 nm thick atomistically mixed interlayer between the metal film and PI substrate. This interlayer appeared to have resulted from the implantation of high energy adatoms during the RF bias sputtering of Cr film. This mixed layer serves as an interlocking layer, which enhances adhesion between the metal and PI layers.

  • PDF

COG(chip on glass) 구조에서 유리를 투과하는 레이저 조사 방식에 의한 area array type 패키지의 마운팅 공정

  • 이종현;김원용;이용호;김영석
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.07a
    • /
    • pp.119-126
    • /
    • 2001
  • Chip-on-glass(COG) mounting of area array electronic packages was attempted by heating the rear surface of a contact pad film deposited on a glass substrate. The pads consisted of an adhesion(i.e. Cr or Ti) and a top coating layer(i.e. Ni or Cu) was heated by an UV laser beam transmitted through the glass substrate. The laser energy absorbed on the pad raised the temperature of a solder ball which is in physical contact with the pad, forming a reflowed solder bump. The effects of the adhesion and top coating layer on the laser reflow soldering were studied by measuring temperature profile of the ball during the laser heating process. The results were discussed based on the measurement of reflectivity of the adhesion layer. In addition, the microstructures of solder bumps and their mechanical properties were examined.

  • PDF

The Recent Tendency of Environmentally-friendly Tackifiers

  • Sakurai, Yoshihiro
    • Journal of Adhesion and Interface
    • /
    • v.8 no.1
    • /
    • pp.28-33
    • /
    • 2007
  • It is a main trend not to use organic solvents in the adhesive industry from the recent environmental and safe points of view. For example, water-based, hot-melt, or UV curable adhesives are being investigated. Several different kinds of tackifiers that are formulated in the adhesives in order to give them more functional properties like initial tack and higher adhesion, etc., have been proposed to meet the recent trend. Firstly, the characteristics and fundamental properties of the respective materials are presented. In Japan, the trend to develop the water-based adhesives is most remarkable. While the environmental regulations are getting harder, Arakawa Chemical has been spending a lot of energy for the research, and developed toluene-free and solvent free tackifier dispersions that are presented precisely.

  • PDF

Joining of Polyethylene Polymer by the Ultrasonic Welding (초음파 용접을 이용한 폴리에틸렌 수지의 접합)

  • Lee, Chul-Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.3
    • /
    • pp.73-81
    • /
    • 1997
  • This study was to find the best adhesive condition comparing mechanical property in case of hot-melt adhesion using glue-gun, ultrasonic welding with adhesion and only ultrasonic welding in order to adhere thermoplastic resin of polyethylene (PE) in which reliable adhesion was resulted in case of ultrasonic welding with same materials of PE. The best welding condition were acquired at welding time 1 second, welding pressure 250kPa for PE-PE where welding time and welding pressure were increased in accordance with the increase of material strength. At the best ultrasonic welding conditions, bonding strength of PE-PE welding was about 21MPa of which material have tensile strength of 24MPa. Through the analysis of microscophic test for ultrasonic welding structure, it was distinguished between well welded structure with higher intermolecule flow and bad welded structure with lower flow, of which result is mostly correspond with the result of tensile strength test.

  • PDF

Joining of Polymer Materials with Ultrasonic Welding (초음파 용접을 이용한 합성수지의 결합)

  • 이철구;정규창
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.48-56
    • /
    • 1998
  • This study was performed to find the best bonding conditions by comparing mechanical properties in thermoplastic resin of polyethylene (PE) and polyamide (PA) adhesion. Following results were obtained from the tests with varying welding time and welding pressure. Satisfactory adhesion was executed in ultrasonic welding for the same materials of PE and PA. The best welding conditions were found to be welding time of 1 second, welding pressure of 250kPa for PE-PE weding, 2 second and 350kPa for PA-PA welding. Welding time and welding pressure end to increase with the increase of materials strength. Dissimilar materials were adhered when adhesion and ultrasonc welding were performed simultaneously. The observation of the structure of ultrasonic welding area with microscope showed differenticated structures between well adhered region and badly adhered region.

  • PDF

Study on Ice Making Behavior of Water Solution with Surfactant (계면활성제 첨가수용액의 제빙에 관한 기초연구)

  • ;Hideo Inaba;Akihiko horibe
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1175-1183
    • /
    • 2001
  • Recently, a great attention has been paid to the ice thermal storage system for the purpose of energy saving and reduction in peak electrical demand. In the present study, it has been investigated the freezing behavior of several kinds of water solutions with nonionic surfactant. In order to prevent ice blockage in a cooled pipe, the amount and wall adhesion behavior of ice of the test fluids were observed experimentally under different concentration of water solution with surfactant, temperature of cooled wall, and the shear velocity of test fluids. The results showed that the size of ice crystal became smaller at higher shear velocity at wall. And the lowest limit of wall adhesion of ice in water solution with surfactant was found at 230 W/$m^2$ of heat flux.

  • PDF

Investigation of Adhesion Mechanism at the Metal-Organic Interface Modified by Plasma - Part I

  • Sun, Yong-Bin
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.123-126
    • /
    • 2002
  • For the mold die sticking mechanism, the major explanation is that EMC filler of silica wears die surface roughened, which results in increase of adhesion strength. As big differences in experimental results from semiconductor manufacturers are dependent on EMC models, however, chemisorptions or acid-base interaction is apt to be also functioning as major mechanisms. In this investigation, the plasma source ion implantation (PSII) using $O_2$, $N_2$, and $CF_4$ modifies sample surface to form a new dense layer and improve surface hardness, and change metal surface condition from hydrophilic to hydrophobic and vice versa. Through surface energy quantification by measuring contact angle and surface ion coupling state analysis by Auger, major governing mechanism for sticking issue was figured out to be a complex of mechanical and chemical factors.

  • PDF