• Title/Summary/Keyword: adhesion behavior

Search Result 379, Processing Time 0.024 seconds

Curing Behavior and Adhesion Performance of Urea-Melamine-Formaldehyde (UMF) Resin by Staged Addition of Melamine (멜라민 첨가 순서에 따른 UMF 접착제의 경화거동과 접착력의 영향)

  • Xu, Guang-Zhu;Eom, Young-Geun;Lee, Young-Kyu;Lim, Dong-Hyuk;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.84-89
    • /
    • 2009
  • The objective of this research was to investigate the curing behavior and adhesion performance of urea-melamine-formaldehyde (UMF) resin for the four types of UMF-1, UMF-2, UMF-3, and UMF-4 which synthesized by the staged addition of melamine. Also, various network structures of these resin types were discussed based on their different curing behavior and adhesion performance. The curing behavior was evaluated by DMTA and thermal stability was checked by TGA. Adhesion performance was evaluated by dry and wet shear strengths and the pH value of each cured resin was checked to see its effect on the adhesion performance. The results indicated that the UMF-1 resin type by the addition of melamine initially with the urea and formaldehyde at the same F/(U+M) rate showed the lowest thermal stability, rigidity (${\Delta}E^{\prime}$), temperature of tan ${\delta}$ maximum ($T_{tan}\;_{\delta}$), and wet shear strength, and pH value of cured resin. In wet shear strength, however, the UMF-4 resin type appears to be slightly higher than UMF-1 resin type.

  • PDF

Irregular Failures at Metal/polymer Interfaces

  • Lee, Ho-Young
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.4
    • /
    • pp.347-355
    • /
    • 2003
  • Roughening of metal surfaces frequently enhances the adhesion strength of metals to polymers by mechanical interlocking. When a failure occurs at a roughened metal/polymer interface, the failure prone to be cohesive. In a previous work, an adhesion study on a roughened metal (oxidized copper-based leadframe)/polymer (Epoxy Molding Compound, EMC) interface was carried out, and the correlation between adhesion strength and failure path was investigated. In the present work, an attempt to interpret the failure path was made under the assumption that microvoids are formed in the EMC as well as near the roots of the CuO needles during compression-molding process. A simple adhesion model developed from the theory of fiber reinforcement of composite materials was introduced to explain the adhesion behavior of the oxidized copper-based leadframe/EMC interface and failure path. It is believed that this adhesion model can be used to explain the adhesion behavior of other similarly roughened metal/polymer interfaces.

Effect of Temperature on the Micro-scale Adhesion Behavior of Thermoplastic Polymer Film (열가소성 폴리머 필름의 마이크로 점착 거동에 대한 온도의 영향)

  • Kim, Kwang-Seop;Heo, Jung-Chul;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.86-95
    • /
    • 2009
  • Adhesion tests were carried out in order to investigate the effect of temperature on the adhesion behavior between a PMMA film and a fused silica lens in the micro scale. For the tests, a microtribometer system was specially designed and constructed. The pull-off forces on the PMMA film were measured under atmospheric condition as the temperature of the PMMA film was increased from 300 K to 443 K and decreased to 300 K. The contact area between the PMMA film and the lens was observed during the test. The adhesion behavior was changed with the change of the PMMA surface state as the temperature increased. In glassy state below 363 K, the pull-off force did not change with the increase of temperature. In rubbery state from 383 K to 413 K, the pull-off force increased greatly as the temperature increased. In addition, the area of contact was enlarged. In viscous state above 423 K, the fingering instability was observed in the area of contact when the PMMA film contacted with the lens. It was also found that the adhesion behavior can be varied with the thermal history of the PMMA film. The residual solvent in the PMMA film could emerge to the PMMA surface due to the heating and reduced the pull-off force.

Effect of fiber-matrix adhesion on the fracture behavior of a carbon fiber reinforced thermoplastic-modified epoxy matrix

  • Carrillo-Escalante, H.J.;Alvarez-Castillo, A.;Valadez-Gonzalez, A.;Herrera-Franco, P. J.
    • Carbon letters
    • /
    • v.19
    • /
    • pp.47-56
    • /
    • 2016
  • In this study, the fracture behavior of a thermoplastic-modified epoxy resin reinforced with continuous carbon fibers for two levels of fiber-matrix adhesion was performed. A carbon fiber with commercial sizing was used and also treated with a known silane, (3-glycidoxy propyl trimethoxysilane) coupling agent. Toughness was determined using the double cantilever test, together with surface analysis after failure using scanning electron microscope. The presence of polysulfone particles improved the fracture behavior of the composite, but fiber-matrix adhesion seemed to play a very important role in the performance of the composite material. There appeared to be a synergy between the matrix modifier and the fiber-matrix adhesion coupling agent.

Performance Test Method on the Influence Waterproofing as Behavior of Concrete Structure (지하 콘크리트 구조물의 거동에 대한 방수층의 대응성 평가에 관한 실험적 연구)

  • Noh Jong-Soo;Kwon Shi-Won;Kwak Kyu-Sung;Kwon Kee-Joo;Oh Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.77-81
    • /
    • 2004
  • The massive structures are not free to move with vibration, differential settlement, thermal stresses because, construction and expansion joint, crack etc., can be large enough to cause leakage as deformation of waterproofing. It has been depended on the test method of tensile/tear strength which is waterproofing performance as behavior of concrete structure crack. However, not to practically confirm the creep applied to concrete surface, even waterproofing membrane have more performance than definite strength and elasticity. Therefore, in this study will focus on the test method to consider a resistance performance about loose adhesion and deformation of waterproofing and behavior of concrete structure as construction/expansion joint, crack. Performance test method on the influence as behavior of concrete structure crack is to choose waterproofing materials and construction method which possible to confront with behavior of 50mm crack in the atmosphere and low temperature. Examine the deformation of waterproofing membrane and loose adhesion which can occur to structure in general job site, suggest standard testing method to analyze correlation waterproofing membrane and structure with 5-types of materials used in this study, such as Adhesion membrane and sheet complex, sheet and urethane complex, self-adhesive sheet, spray poly-urea, spray membrane of rubberized Asphalt.

  • PDF

Preparation and Characterization of Anionic Emulsified Asphalt with Enhanced Adhesion Properties

  • Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.50 no.4
    • /
    • pp.304-313
    • /
    • 2015
  • In this study, the anionic emulsified asphalt was prepared by dispersing asphalt particles evenly into water with combination of anionic and nonionic surfactants. Effects of NaOH and $CaCl_2$ on the phase stability of the emulsified asphalt were also investigated through zeta potential value and rheology behavior; the emulsified asphalt added with NaOH and $CaCl_2$ showed higher zeta potential value than that the asphalt with addition of only anionic and nonionic surfactants. In addition, with regard to shear thinning behaviors, it was found that pH of the emulsified anionic asphalt and $Ca^{2+}$, counter ion, affected the phase stability. SBR (styrene-butadiene-rubber) latex, EPD (water dispersed Epoxy), PU (polyurethane) and RI-10S, SBS (styrene-butadiene-styrene)-based property improvement additive, were used and studied to enhance the adhesion properties with the aggregates. RI-10S, however, was found to be only compatible with the anionic emulsified asphalt; the coating rate, adhesion and compression strength were increased with the RI-10S content.

Study on Ice Making Behavior of Water Solution with Surfactant (계면활성제 첨가수용액의 제빙에 관한 기초연구)

  • ;Hideo Inaba;Akihiko horibe
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.12
    • /
    • pp.1175-1183
    • /
    • 2001
  • Recently, a great attention has been paid to the ice thermal storage system for the purpose of energy saving and reduction in peak electrical demand. In the present study, it has been investigated the freezing behavior of several kinds of water solutions with nonionic surfactant. In order to prevent ice blockage in a cooled pipe, the amount and wall adhesion behavior of ice of the test fluids were observed experimentally under different concentration of water solution with surfactant, temperature of cooled wall, and the shear velocity of test fluids. The results showed that the size of ice crystal became smaller at higher shear velocity at wall. And the lowest limit of wall adhesion of ice in water solution with surfactant was found at 230 W/$m^2$ of heat flux.

  • PDF

Uplift Capacity and Creep Behavior of Concrete Pile Driven in Clay (점토지반에 타입된 콘크리트 말뚝의 인발저항 및 크리프 거동)

  • 신은철;김종인;박정준;이학주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.371-378
    • /
    • 2001
  • The working load at pile is sometimes subjected to not only compression load but also lateral load and uplift forces. Pile foundation is essential and uplift load can be applied because of buoyancy, a typhoon, wind or seismic forces. This study was carried out to determine the uplift capacity of concrete pile foundation driven in clay. Pile was driven in clay, between pile and clay adhesion factor was estimated, and it is the mean value between the cast-in-situ-pile and steel pipe pile. When pile foundation is loaded for long time, creep behavior occurs. The behavior of creep is originated from the clay creep contacted with pile. The creep behavior of pile foundation embedded in clay is heavily depended on the thickness of clay around the pile shaft, pore water pressure in clay, and creep behavior of clay.

  • PDF

The Curing Behavior and PSA Performance of Acrylic Pressures Sensitive Adhesives using Aluminum Acetylacetonate (무기계 킬레이트를 이용한 아크릴 점착제의 경화거동 및 점착 물성)

  • Kim, Soyon;Lim, Dong-Hyuk;Oh, Jin-Kyoung;Cho, Young-Shik;Park, Ji-Won;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.9 no.3
    • /
    • pp.27-33
    • /
    • 2008
  • A series of aluminum acetylacetonate (AlACA) belonging in inorganic chelate calculating with the ratio of -COOH mole in PSA (0, 0.25, 0.5, 0.75, 1) and a series of PSA with different acrylic acid contents (3 wt%, 7 wt%, 10 wt%) were blended and measured gel contents, probe tack, peel strength, SAFT. With the increasing of aluminum acetylacetonate contents, the network structure was formed and gel contents were increased. Probe tack fibrillation and peel strength were decreased following the addition of aluminum acetylacetonate. SAFT were significantly changed with the change of acrylic acid contents in PSA. From these results, aluminum acetylacetonate could be used in the range of which would not change the performance a lot, and cure the PSA.

  • PDF

Estimation of Interfacial Adhesion through the Micromechanical Analysis of Failure Mechanisms in DLC Film

  • Jeong, Jeung-Hyun;Park, Hae-Seok;Ahn, Jeong-Hoon;Dongil Kwon
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.73-81
    • /
    • 1997
  • In this paper, it is intended to present more reproducible and quantitative method for adhesion assemssement. In scratch test, micromechanical analysis on the stress state beneath the indenter was carried out considering the additional blister field. The interface adhesion was quantified as work of adhesion through Griffith energy approach on the basis of the analyzed stress state. The work of adhesion for DLC film/WC-Co substrate calculated through the proposed analysis shows the identical value regardless of distinctly different critical loads measured with the change of film thickness and scratching speed. On the other hand, uniaxial loading was imposed on DCL film/Al substrate, developing the transverse film cracks perpendicular to loading direction. Since this film cracking behavior depends on the relative magnitude of adhesion strength to film fracture strength, the quantification of adhesion strength was given a trial through the micromechanical analysis of adhesion-dependence of film cracking patterns. The interface shear strength can be quantified from the measurement of strain $\varepsilon$s and crack spacing $\lambda$ at the cessation of film cracking.

  • PDF