• Title/Summary/Keyword: adenosine receptor

Search Result 203, Processing Time 0.027 seconds

The Involvement of Nitric Oxide and Guanylate Cyclase on the Adenosine A2B Receptor-induced Cerebral Blood Responses in the Rats

  • Park, Chan-Sook;Shin, In-Chul
    • Biomolecules & Therapeutics
    • /
    • v.13 no.2
    • /
    • pp.95-100
    • /
    • 2005
  • This study was performed to investigate the mechanism of cerebral blood flow of adenosine $A_{2B}$ receptor agonist in the rats, and to define whether its mechanism is mediated by nitric oxide (NO) and guanylate cyclase. In pentobarbital-anesthetized, pancuronium-paralyzed and artificially ventilated male Sprague-Dawley rats, all drugs were applied topically to the cerebral cortex. Blood flow from cerebral cortex was measured using laser-doppler flowmetry. Topical application of an adenosine $A_{2B}$ receptor agonist, 5'-N-ethylcar-boxamidoadenosine (NECA; $4{\mu}mol/l$) increased cerebral blood flow. This effect of NECA ($4{\mu}mol/l$) was blocked by pretreatment with NO synthase inhibitor, $N^G$-nitro-L-argine methvlester (L-NAME; $40{\mu}mol/l$) and guanylate cyclase inhibitor, LY-83,583 ($10{\mu}mol/l$). These results suggest that adenosine $A_{2B}$ receptor increases cerebral blood flow. It seems that this action of adenosine $A_{2B}$ receptor is mediated via the NO and the activation of guanylate cyclase in the cerebral cortex of the rats.

Effects of Adenylate Cyclase, Guanylate Cyclase and KATP Channel Blockade on the Cerebral Blood Flow Response Induced by Adenosine A2B Receptor Agonist in the Rats

  • Youn, Doo-Sang;Shin, In-Chul
    • Biomolecules & Therapeutics
    • /
    • v.13 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • This study was performed to investigate the regulatory mechanism of cerebral blood flow of adenosine A$_{2B}$ receptor agonist in the rats, and to define whether its mechanism is mediated by adenylate cyclase, guanylate cyclase and potassium channel. In pentobarbital-anesthetized, pancuronium-paralyzed and artificially ventilated male Sprague-Dawley rats, all drugs were applied topically to the cerebral cortex. Blood flow from cerebral cortex was measured using laser-Doppler flowmetry. Topical application of an adenosine A$_{2B}$ receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA; 4 umol/I) increased cerebral blood flow. This effect of NECA (4 umol/I) was not blocked by pretreatment with adenylate cyclase inhibitor, MDL-12,330 (20 umol/I). But effect of NECA (4 umol/I) was blocked by pretreatment with guanylate cyclase inhibitor, LY-83,583 (10 umol/I) and pretreatment with ATP-sensitive potassium channel inhibitor, glipizide (5 umol/I). These results suggest that adenosine A$_{2B}$ receptor increases cerebral blood flow. It seems that this action of adenosine A$_{2B}$ receptor is mediated via the activation of guanylate cyclase and ATP-sensitive potassium channel in the cerebral cortex of the rats.

DESIGN AND SYNTHESIS OF A3 ADENOSINE RECEPTOR LlGANDS. 3′-FLUORO ANALOGUES OF CI- IB-MECA

  • Lim, Moo-Hong;Kim, Hea-Ok;Moon, Hyung-Ayong;Chun, Moon-Woo;Jeong, Lak-Shin
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.364.1-364.1
    • /
    • 2002
  • 2-Chloro-N6-(3-iodobenzyl)-adenosine-5'-methylcarboxamide (2-CI-IB-MECA) has been recognized to be one of the most selective agonists (Ki = 1.0 nM) for rat adenosine A3 receptor. On the basis of the high binding affinity of 2-CI-IB-MECA to adenosine A3 receptor. it was interesting to find out whether 2'- and/or 3'-hydroxyl group of 2-CI-IB-MECA is essential for the binding affinity to the receptor. (omitted)

  • PDF

Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

  • Chee, Hyun Keun;Oh, S. June
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.282-288
    • /
    • 2013
  • The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

MODULATION OF ATP-GATED CHANNEL BY ADENOSINE RECEPTOR

  • Park, Tae-Ju;Kim, Kyong-Tai
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.8-8
    • /
    • 1996
  • The regulatory role of A$\_$2A/ adenosine receptors on the P purinoceptor-mediated calcium signaling was investigated in rat pheochromocytoma (PC 12) cells. When PC 12 cells were treated with 2-p-(2-carboxyethyl) phenethylamino- 5' - N -ethylcarboxamido-adenosine (CGS21680), a specific agonist of the A$\_$2A/ adenosine receptor, extracellular ATP-evoked [Ca$\^$2+/]$\_$I/ rise was inhibited by -20%. (omitted)

  • PDF

Effect of Adenosine on the Release of $[^3H]-5-hydroxytryptamine$ during Glucose/Oxygen Deprivation from Rat Hippocampal Slices (흰쥐 해마절편에서 포도당/산소 고갈에 의한 5-hydroxytryptamine 유리변동에 미치는 Adenosine의 영향)

  • Cha, Kwang-Eun;Pae, Young-Sook;Lee, Kyung-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.657-664
    • /
    • 1997
  • The effects of adenosine, adenosine A1 receptor antagonist (DPCPX), or NMDA receptor antagonist (APV) on the spontaneous release of $[^3H]-5-hydroxytryptamine$ ($[^3H]-5-HT$) during normoxic/normoglycemic or hypoxic/hypoglycemic period were studied in the rat hippocampal slices. The hippocampus was obtained from the rat brain and sliced $400\;{\mu}m$ thickness with the tissue slicer. After 30 min's preincubation in the normal buffer, the slices were incubated for 30 min in a buffer containing $[^3H]-5-HT$ ($0.1\;{\mu}M,\;74{\mu}Ci/8\;ml$) for uptake, and washed. To measure the release of $[^3H]-5-HT$ into the buffer, the incubation medium was drained off and refilled every ten minutes through sequence of 14 tubes. Induction of glucose/oxygen deprivation (GOD; medium depleting glucose and gassed with 95% $N_2/5%\;CO_2$) was done in 6th and 7th tube. The radioactivities in each buffer and the tissue were counted using liquid scintillation counter and the results were expressed as a percentage of the total radioactivities. When slices were exposed to GOD for 20 mins, the spontaneous release of $[^3H]-5-HT$ was markedly increased and this increase of $[^3H]-5-HT$ release was blocked by adenosine ($10\;{\mu}M$) or DL-2-amino-5-phosphonovaleric acid (APV; $30\;{\mu}M$). Adenosine $A_1$ receptor specific antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) exacerbate GOD-induced increase of spontaneous release of $[^3H]-5-HT$. These results suggest that Adenosine may play a role in the GOD-induced spontaneous release of $[^3H]-5-HT$ through adenosine $A_1$ receptor activity.

  • PDF

Effect of $K^+-channel$ Blockers on the $A_1-adenosine$ Receptor-Coupled Regulation of Electrically-Evoked Norepinephrine Release in the Rat Hippocampus (흰쥐 해마에서 Norepinephrine 유리를 조절하는 $A_1-adenosine$ 수용체의 역할에 미치는 $K^+$ 통로 차단제의 영향)

  • Choi, Bong-Kyu;Kim, Sang-Hoon
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.301-309
    • /
    • 1996
  • Since it has been reported that the depolarization-induced NE release is inhibited by activation of presynaptic $A_1-adenosine$ heteroreceptor in hippocampus, a large body of experimental data on the post-receptor mechanism of this process has been accumulated. But, the post-receptor mechanism of presynaptic $A_1-adenosine$ receptor on the NE release has not been clearly elucidated yet. Therefore, it was attempted to clarify the participation of $K^+-channel$ in the post-receptor mechanisms of the $A_1-adenosine$ receptor-mediated control of NE release in this study. Slices from rat hippocampus were equilibrated with $^3H-norepinephrine$ and the release of the labelled products was evoked by electrical stimulation (3 Hz, 5 $VCm^{-1}$, 2 ms, rectangular pulses), and the influence of various agents on the evoked tritium-outflow was investigated. Adenosine, in concentrations ranging from $1{\sim}30\;{\mu}M$, decreased the NE release in a dose-dependent manner, without affecting the basal rate of release. 4AP $(1{\sim}30{\mu}M)$, a specific A-type $K^+-channel$ blocker, increased the evoked NE release in a dose-related fashion, and the basal rate of release is increased by 10 and $30{\mu}M$. TEA $(1{\sim}10{\mu}\;M)$, a nonspecific $K^+-channel$ blocker, increased the evoked NE release in a dose-dependent manner without affecting basal release. The adenosine effects were significantly inhibites by 3 ${\mu}M$ 4AP and 10 mM TEA treatment. 4AP $(30{\mu}M)-$ and TEA (10 mM)-induced increments of evoked NE release were completely abolished in $Ca^{++} free, but these were recoverd in low $Ca^{++} medium. And the effects of $K^+-channel$ blockers in low $Ca^{++} medium were inhibites and abolishes by $Mg^{++} (4 mM) adding and TTX $(0.3{\mu}M)$ adding medium, respectively. These results suggest that the decrement of the evoked NE-release by $A_1-adenosine$ receptor is mediated by 4AP and TEA sensitive $K^+-channel$.

  • PDF

Effects of Unilateral Renal Arterial Infusion of Adenosine and Its Analogues on Renal Function in Two-Kidney One Clip Hypertensive Rabbits (신성 고혈압 가토에서 Adenosine 유사체가 신장기능에 미치는 영향)

  • Ma, Jae-Sook;Cho, Kyung-Woo;Kim, Suhn-Hee;Koh, Gou-Young;Seo, Man-Wook
    • The Korean Journal of Physiology
    • /
    • v.24 no.1
    • /
    • pp.145-159
    • /
    • 1990
  • Recently, it has been suggested that the endogenous adenosine may be the mediator for the intercellular communication in the regulation of tubuloglomerular feedback control and renin release. Even though two subclasses of adenosine receptors, A1 and A2, have been described, their functional roles are controversial. The present study was undertaken to clarify the role of adenosine receptors in hypertensive rabbit caused by clamping of renal artery. Experiments were done in two-kidney one clip Goldblatt hypertensive rabbits (2K1GHR) and sham-operated normotensive rabbits. Adenosine, N6-cyclohexyladenosine (CHA) and 5'-N-ethylcarboxamidoadenosine (NECA) were infused into a renal artery. The decreases in urine volume, renal blood flow, glomerular filtration rate and excreted amounts of electrolytes caused by adenosine and CHA were significantly attenuated in 2K1CHR. However, changes in renal function caused by A2 adenosine receptor agonist, NECA, tend to be accentuated in 2K1CHR. These results suggest that the attenuation of renal effect caused by adenosine and A1 adenosine receptor agonist may be due to the modification of adenosine receptor in the kidney in Goldblatt hypertensive rabbits.

  • PDF

Activation of Adenosine A2A Receptor Impairs Memory Acquisition but not Consolidation or Retrieval Phases

  • Kim, Dong-Hyun;Ryu, Jong-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.320-327
    • /
    • 2008
  • Several lines of evidence indicate that adenosine $A_{2A}$ agonist disrupts spatial working memory. However, it is unclear which stages of learning and memory are affected by the stimulation of adenosine $A_{2A}$ receptor. To clarify these points, we employed CV-1808 as adenosine $A_{2A}$ agonist and investigated its effects on acquisition, consolidation, and retrieval phases of learning and memory using passive avoidance and the Morris water maze tasks. During the acquisition phase, CV-1808 (2-phenylaminoadenosine, 1 and 2 mg/kg, i.p.) decreased the latency time in passive avoidance task and the mean savings in the Morris water maze task, respectively. During the consolidation and retrieval phase tests, CV-1808 did not exhibited any effects on latency time in passive avoidance task and the mean savings in the Morris water maze task. These results suggest that CV-1808 as an adenosine $A_{2A}$ agonist impairs memory acquisition but not consolidation or retrieval.

Adenosine Agonist-induced Changes in the Transmission of Sensory Signals in the Cat Spinal Cord

  • Kim, Kee-Soon;Shin, Hong-Kee;Kim, Jin-Hyuk
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.85-96
    • /
    • 1996
  • Adenosine and its analogues are known to possess analgesic effects and to be involved in the opiate-induced antinociception as well. This study was designed to investigate the effects of three adenosine agonists, 5'- (N-cyclopropyl) -carboxamidoadenosine(CPCA), 5'-N-ethylcarboxamidoadeno-sine (NECA) and $N^6-cyclohexyladenosine$ (CHA) on the signal transmission in the spinal cord and also to elucidate mechanisms of their actions in the anesthetized cat. All the tested adenosine agonists(i.v,) exerted inhibitory effects on the responsiveness of the wide dynamic range (WDR) cells, the inhibitory action of CHA, an adenosine $A_1$ receptor agonist, $(80{\mu}g/Kg)$ being most weak. The intravenous CPCA, an adenosine $A_2$ receptor agonist, $(20{\mu}g\;/Kg)$ and NECA, nonspecific adenosine receptor agonist, $(20{\mu}g\;/Kg)$ inhibited the responses of WDR cells to pinch and C fiber stimulation more strongly than those to brush and A fiber stimulation. CPCA (i.v.) also suppressed the responses of WDR cells to thermal stimulus. And all the CPCA-induced inhibitions were caffeine-reversible. When CPCA was directly applied onto the spinal cord or intravenously administered into the spinal cat, on average, about three quarters of the CPCA-induced inhibitory effect was abolished. On the other hand, in the animal with spinal lesions in the ipsilateral dorsolateral area, the CPCA-induced inhibition was comparable to that observed in the spinal cats. In conclusion, this study shows that adenosine agonists strongly suppress the responses of WDR cells to pinch, C fiber stimulation and thermal stimuli mainly through the supraspinal adenosine $A_2-receptors$.

  • PDF