• Title/Summary/Keyword: additive oil

Search Result 185, Processing Time 0.018 seconds

A Study on the Tribological Characteristics of Automobile Gear Oil with Addition of Compound Additives (자동차 기어오일의 혼합첨가제 첨가에 따른 트라이볼로지 특성에 관한 연구)

  • Choi, Nag-Jung;Youn, Suk-Bum
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.557-562
    • /
    • 2008
  • In this paper, experiments have been performed for the investigation of tribological characteristics of automobile gear oil with the addition of ZDDP and DEP by using the FALEX WEAR TEST MACHINE. The results are as follows. The wear characteristics of gear oil was improved by adding compound additives. The extreme pressure of gear oil increases and then decreases with the applied load. The maximum extreme pressure of gear oil with compound additive is bigger then that of pure gear oil. The friction coefficient of pure gear oil monotonically increases with the temperature, but that of gear oil mixed with the additives decreases at the high temperature.

Study on Combustion Characteristics of Diesel Fuel and Low Quality Oil Droplet with Additive Oxygenate and Paraffin (함산소계 및 파라핀계 혼합 경유 및 저질유 액적의 연소특성에 관한 연구)

  • Kim Bong-Seock;Ogawa Hideyuki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.552-561
    • /
    • 2006
  • The single droplet combustion characteristics of diesel fuel and low quality oil with additive oxygenate and paraffin under high ambient temperature and atmospheric pressure were investigated in the study. The results of the study may are concluded as follows: In the combustion of diesel fuel and low quality oil droplet with additive of oxygenate and paraffin. the dimensionless droplet size of $(D/Do)^2$ was linearly decreased with time. A fuel droplet with low boiling temperature additives and in high boiling temperature base fuel evaporates and burns faster than usual base fuel. Especially. these trends were remarkably obtained by decreasing boiling point and increasing blending contents of additives in case of oxygenated agents rather than n-paraffin agents. This rapid burning may result from so-called 'micro-explosion' and its burning intensity varies with the types of additives. The results above may suggest that rapid evaporation of oxygenate additive in the middle stage of combustion can contribute much to combustion improvement of blended fuels.

The Study on Field Test of the New Formulated and Commercial Diesel Engine Oils (제조 디젤엔진 오일과 상업용 디젤엔진 오일의 실차시험 연구)

  • 김영운;정근우;강석춘
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.51-59
    • /
    • 2001
  • A diesel engine oil formulated in KRICT and a commercial diesel engine oil (API CG-4) were tested by car and their Kinematic Viscosity, TAN, TBN, metal content, additive depletion, anti-wear property and IR analysis were analyzed. From the research, both of the tested oils had almost the same properties f3r the change of TAN and TBN, but the change of Kinematic Viscosity of formulated oil was slightly higher than that of commercial oil. The iron content in the commercial oil increased rapidly from 7000 km while that of the formulated oil was still low. These results were confirmed by the anti-wear test with a 4-ball wear test machine for the each samples. Also, for the commercial oil, the depletion factor of the Zn-DTP which was added as an anti-wear property did not change any more after 7000 km. But, that of the formulated oil changed continuously to 8000 km, which means that the ability to prevent wear of the sliding pairs exists for the formulated oil. From the analysis results of oil properties obtained by field test, it was found that the commercial oil could be used only within 7000 km, but the formulated oil could be used more than 8000 km without severe wear of the sliding parts in the diesel engine.

  • PDF

Headspace Analysis for Residual Hexane in Vegetable Oil

  • Oh, Chang-Hwan;Kwon, Yong-Kwan;Jang, Young-Mi;Lee, Dal-Su;Park, Jong-Sei
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.456-460
    • /
    • 2005
  • To enforce the maximum residue limit for residual hexane (0.005 g/kg) in commercially available Korean vegetable oil, convenient and accurate quantification methods were investigated. Using dual surrogate standards, pentane and heptane were dissolved in ethanol, and then added to hexane-tree sunflower oil for setting up the calibration curve. Gas Chromatograph-Flame Ionization Detector with a porous layer open tubular column, indicated good chromatographic separation of hexane from other inhibiting matrix components. The lowest calibration level was $0.5\;{\mu}g/g$, not exceeding a relative standard deviation of 10% (RSD%), and 1.0\;{\mu}g/g$ not exceeding a deviation of 22% RSD% using heptane as an internal standard for the Static headspace analysis by using a headspace auto-sampler and manual injection, respectively. The residual hexane was detected in nine of the samples among 87 vegetable oil samples purchased on the local market.

Development of a Simulation Program to Predict the Performance of the Multi-grade Lubricant before Blending Base Oil with Additives (기유와 첨가제 혼합 전 다등급 윤활유의 성능 예측 시뮬레이션 프로그램 개발)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • Generally, to product multi-grade oil like engine oil, a sort of mineral base oil is mixed with a fundamental additive package liquid and a polymer liquid as viscosity index improver in order to improve the lubricating property of base oil. That is, engine oil is the mixture of more than two fluids. Specially, a polymeric type liquid cannot be seen as the linear viscosity like Newtonian fluids. In this research, by using the governing equation describing non-Newtonian hydrodynamic lubrication related with the mixture of incompressible fluids based on the principle of continuum mechanics, it will be compared the bearing performance between the mixture of each liquid to be blended and multi-grade engine oil as a single fluid in a high speed hydrodynamic journal bearing. Further, it is to be found the way estimating the performance of the blended multi-grade engine lubricant in a journal bearing in advance before blending by using the physical properties of mineral base oil, fundamental additive liquid and polymer liquid of viscosity index improver. So, it can be reduced the number of trial and error to get the wanted lubricant by selecting the proper volume fraction of each liquid to satisfy the expected performance and estimating in advance the performance of various multi-grade oils before blending. Therefore, it can be shorten the developing time and saved the developing cost.

The Performance Comparison between the Mixture of Each Liquid to be Blended and Multi-grade Engine Oil as a Single Fluid in a High Speed Thermo-hydrodynamic Journal Bearing (고속 열유체 저어널 베어링에서 단일유체로서의 다등급 엔진 오일과 그 첨가액체들의 혼합물에 대한 성능 비교)

  • Chun, Sang-Myung
    • Tribology and Lubricants
    • /
    • v.28 no.2
    • /
    • pp.81-92
    • /
    • 2012
  • To product multi-grade oil like engine oil, a sort of mineral base oil is mixed with a fundamental additive liquid package and a polymer liquid as viscosity index improver in order to improve the lubricating property of oil. That is, engine oil is the mixture of more than two fluids. In this paper, it will be systematically organized the governing equation describing non-Newtonian thermo-hydrodynamic lubrication related with the mixture of incompressible fluids based on the principle of continuum mechanics. Then, in order to find how the thermal analysis effect on the bearing performance lubricated with the mixture of multi-fluids, it will be compared to the performances between the mixture of each liquid to be blended and multi-grade engine oil as a single fluid in a high speed journal bearing. It is found that, in the case of lower viscosity oil, the difference of pressure distribution between the above two cases turns out to be existed, even if the load capacity is same level.

Development of Experimental Device for Analysis of Hydraulic Oil Characteristics with Dielectric Constant Sensors (유전상수 센서를 이용한 유압 작동유의 분석을 위한 실험장비 개발)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.41-47
    • /
    • 2021
  • An experimental device was developed for analysis of hydraulic oil characteristics with dielectric constant sensors. Online analysis is the most effective method of the three methods used for analyzing lubricant oils. This is because it can monitor the machine condition effectively using oil sensors in real time without requiring excellent analysis skill and eliminates human errors. Determining the oil quality usually requires complex laboratory equipment for measuring factors such as density, viscosity, base number, acid number, water content, additive, and wear debris. However, the electric constant is another indicator of oil quality that can be measured on-site. The electric constant is the ratio of the capacitance of a capacitor using that material as a dielectric, compared with a similar capacitor that has a vacuum as its dielectric. The electric constant affects the factors such as the base oil, additive, temperature, electric field frequency, water content, and contaminants. In this study, the tendency of the electric constant is investigated with a variation of temperature, water content, and dust weight. The experimental device can control working temperature and mix the contaminants with oil. A machine condition monitoring program developed to analyze hydraulic oil is described. This program provides graph and digital values with variation of time. Moreover, it includes an alarm system for when the oil condition is bad.

A Study on the Effect of physico-chemical Factors in Wear Mechanism in a Lubricated Concentrated Contact (II) (윤활시스템에서 마모메카니즘에 미치는 물리화학적 영향에 관한 연구(II))

  • 최웅수;권오관;문탁진;유영흥
    • Tribology and Lubricants
    • /
    • v.4 no.1
    • /
    • pp.43-55
    • /
    • 1988
  • A Study on the effect of the additives in lubricating oil was investigated on the basis of the thermal activated wear theory in terms of their wear behaviours, using four ballwear machine. The sample oils, which included diethyl-3, 5-di-t-butyi-4-hydroxy-benzyl phosphonate (DEP), ZDDP and TCP additives respectively, showed distinct wear characteristics depending upon the bulk oil temperature and the sliding velocity. The newly synthesized additive, viz., DEP showed excellent antiwear performance cornpared with the conventional additives, ZDDP and TCP. On the basis of the experimental results, it is reduced that the wear mechanism of the conventional additives, viz., ZDDP and TCP is the protective film formation and their antiwear capability is depending upon the shearing strength of the film formed. On the other hand, the new additive, DEP showed that the secondary activation energy was much eliminated and so, the thermal instability was reduced by the hydrogen scavenging reaction of the new additive, which was virtually an endothermic reaction process.In conclusion, a new concept of antiwear mechanism is estabilished and testified. And new chemical, which showed the function of hydrogen and free radical scavenging role, is synthesized and introduced as the new, highly antiwear effective lubricating oil additive.

Lubricating Performance of Polyalkylene Glycol and Polyolester Base Oils analyzed from the Model of Interaction between Environmentally adapted Polar base oils and Additive (TCP) (환경친화적인 극성기유와 첨가제(TCP)의 상호작용모델로부터 해석된 Polyalkylene glycol 및 Polyolester Base Oil의 윤활작용)

  • ;Masabumi Masuko
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.146-152
    • /
    • 2001
  • Environmentally adapted synthetic base oils of polyalkylene glycols (PAGs) and polyol esters (POEs) show a high polarity because of their functional groups containing oxygen atom. The lubricating performance of these polar base oils was investigated by using a four-ball tribometer under boundary lubrication condition. Four polyalkylene glycols and five polyol ester base oils were used as sample base oils of high polarity. A mineral oil (MO) and alkylnaphthalene (AN) were used as low polarity base oils. Tricrecylphosphate (TCP) was added to all the base oils, in the range of 10 mmol/L-2000 mmol/L, as an antiwear additive. All the TCP-for-mutated base oils showed optimum concentration characteristics for minimizing wear. The order of optimum concentration of all the base oils was in a good accordance with the order of relative stability of TCP in base oils. The interaction model on solvation between additive and different polar base oils can expect the stability order of TCP. Thus, the model on solvation can explain well the order of optimum concentration of all the base oils, by using the effect of polarity (dielectric constant, $\varepsilon$) and molecular size (molecular weight, MW) of them on stability of TCP in polar base oils. Finally, a good correlation of the optimum concentration for all the base oils was obtained when it was arranged as a function of C∝(M $W_{Base Oil}$/M $W_{TCP}$)$^{-2}$.71/.($\varepsilon$$_{Base Oil}$)$^{3.38}$ by these two parameters.s..

Preparation and Field Test of Diesel Engine Oil (디젤엔진 오일의 제조 및 성능 평가)

  • 김영운;정근우;조원오;김종호;강석춘
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.152-160
    • /
    • 1997
  • A diesel engine oil which was formulated and a commercial diesel engine oil (API CG4) made from same base oil were tested by car and analyzed of their physical, chemical and mechanical properties. The tested oil to be analyzed were sampled from engine every 1000 km until 8000 km and determined the kinematic viscosity, TAN, TBN, metal content in oil, additive depletion, antiwear property and IR analysis. From the study, both the tested oils were almost same properties for the change of TAN and TBN, but the change of kinematic viscosity of formulated oil was slightly higher than that of commercial oil. But the concentration of metal in the formulated oil, especially iron, were increased much less during test. The iron content of the commercial oil was increase rapidly from 7000 km while the formulated oil was still low. These results were conformed by the antiwear test by 4-ball wear test machine for the samples. Also for the commercial oil, the depletion factor of the Zn-DTP which was added as an antiwear property was not change any more after 7000 km. But the formulated oil was change continuously until 8000 km, which mean that the ability of wear protection of the sliding parts exists for the formulated oil. With the results which were analyzed of the properties of oils by field test, it was found that the commercial oil could be used only within 7000 km, but the formulated oil can use more than 8000 km without severe wear of the sliding parts in the diesel engine.

  • PDF