• Title/Summary/Keyword: additive and multiplicative reasoning

Search Result 6, Processing Time 0.019 seconds

Teaching Proportional Reasoning in Elementary School Mathematics (초등학교에서 비례 추론 지도에 관한 논의)

  • Chong, Yeong Ok
    • Journal of Educational Research in Mathematics
    • /
    • v.25 no.1
    • /
    • pp.21-58
    • /
    • 2015
  • The aim of this study is to look into the didactical background for teaching proportional reasoning in elementary school mathematics and offer suggestions to improve teaching proportional reasoning in the future. In order to attain these purposes, this study extracted and examined key ideas with respect to the didactical background on teaching proportional reasoning through a theoretical consideration regarding various studies on proportional reasoning. Based on such examination, this study compared and analyzed textbooks used in the United States, the United Kingdom, and South Korea. In the light of such theoretical consideration and analytical results, this study provided suggestions for improving teaching proportional reasoning in elementary schools in Korea as follows: giving much weight on proportional reasoning, emphasizing multiplicative comparison and discerning between additive comparison and multiplicative comparison, underlining the ratio concept as an equivalent relation, balancing between comparisons tasks and missing value tasks inclusive of quantitative and qualitative, algebraic and geometrical aspects, emphasizing informal strategies of students before teaching cross-product method, and utilizing informal and pre-formal models actively.

A Study on Children's Proportional Reasoning Based on An Ill-Structured Problem (초등수학 비구조화된 문제 해결 과정에서의 비례적 추론)

  • Hong, Jee Yun;Kim, Min Kyeong
    • School Mathematics
    • /
    • v.15 no.4
    • /
    • pp.723-742
    • /
    • 2013
  • The purpose of this study was to analyze children's proportional reasoning process on an ill-structured "architectural drawing" problem solving and to investigate their level and characteristics of proportional reasoning. As results, they showed various perspective and several level of proportional reasoning such as illogical, additive, multiplicative, and functional approach. Furthermore, they showed their expanded proportional reasoning from the early stage of perception of various types of quantities and their proportional relation in the problem to application stage of their expanded and generalized relation. Students should be encouraged to develop proportional reasoning by experiencing various quantity in ration and proportion situations.

  • PDF

Student Understanding of Scale: From Additive to Multiplicative Reasoning in the Constriction of Scale Representation by Ordering Objects in a Number Line (척도개념의 이해: 수학적 구조 조사로 과학교과에 나오는 물질의 크기를 표현하는 학생들의 이해도 분석)

  • Park, Eun-Jung
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.4
    • /
    • pp.335-347
    • /
    • 2014
  • Size/scale is a central idea in the science curriculum, providing explanations for various phenomena. However, few studies have been conducted to explore student understanding of this concept and to suggest instructional approaches in scientific contexts. In contrast, there have been more studies in mathematics, regarding the use of number lines to relate the nature of numbers to operation and representation of magnitude. In order to better understand variations in student conceptions of size/scale in scientific contexts and explain learning difficulties including alternative conceptions, this study suggests an approach that links mathematics with the analysis of student conceptions of size/scale, i.e. the analysis of mathematical structure and reasoning for a number line. In addition, data ranging from high school to college students facilitate the interpretation of conceptual complexity in terms of mathematical development of a number line. In this sense, findings from this study better explain the following by mathematical reasoning: (1) varied student conceptions, (2) key aspects of each conception, and (3) potential cognitive dimensions interpreting the size/scale concepts. Results of this study help us to understand the troublesomeness of learning size/scale and provide a direction for developing curriculum and instruction for better understanding.

An Analysis on Third Graders' Multiplicative Thinking and Proportional Reasoning Ability (초등학교 3학년 학생들의 곱셈적 사고에 따른 비례 추론 능력 분석)

  • Kim, Jeong Won;Pang, Jeong Suk
    • Journal of Educational Research in Mathematics
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2013
  • The primary purpose of this study is to survey multiplicative thinking levels and its characteristics of third graders in elementary school and to analyze how to use it when they solve the proportional problems. As results, the transition thinking ranked the highest among the four kinds of thinking levels when the $3^{rd}$ graders solved the multiplication problems. It means that the largest numbers of students still can not distinguish the additive and multiplicative situations completely and remain in the transition thinking, which thinks both additively and multiplicatively. In addition, the performance of solving proportional problems was distinguished from the levels of thinking. Through this study, we can give some implications of the importance of multiplicative thinking and instructional methods related to multiplication.

  • PDF

The relationship between the students' strategy types and the recognition for proportional situations (학생들의 문제해결전략 유형과 비례상황 인지와의 관계)

  • Park, Jung-Sook
    • Journal of the Korean School Mathematics Society
    • /
    • v.11 no.4
    • /
    • pp.609-627
    • /
    • 2008
  • The purpose of this research was to investigate the relationship between the students' strategy types and the recognition for proportional situations. The students' strategy types which were based on the results of ratio and proportion tests were divided into an additive type, a multiplicative type, and a formal type. This research analyzed the students' activities of categorization when were given the proportional problems and nonproportional problems to the students. And it also explored how to develop students' recognizing for the discrimination between the proportional situations and nonproportional situations. The results was the following. First, the students didn't discriminate the proportional situations and the nonproportional situations in the initial state but they came to discriminate little by little. Secondly, the students didn't discriminate the direct proportions and the inverse proportions until the last stage. Third, the multiplicative type was outperformed more than the formal type in solving the ratio and proportion problems but the formal type was outperformed more than the multiplicative type in discriminating between proportional situations and nonproportional situations. These results are interpreted as showing that solving ratio and proportion tasks and recognizing proportional situations are different aspects of proportional reasoning and it is necessary to understand multiplicative strategy with formal strategy in recognizing proportional situations.

  • PDF

Analysis of Mathematical Structure to Identify Students' Understanding of a Scientific Concept: pH Value and scale

  • Park, Eun-Jung;Choi, Kyung-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.7
    • /
    • pp.920-932
    • /
    • 2010
  • Many topics in science, especially, abstract concepts, relationships, properties, entities in invisible ranges, are described in mathematical representations such as formula, numbers, symbols, and graphs. Although the mathematical representation is an essential tool to better understand scientific phenomena, the mathematical element is pointed out as a reason for learning difficulty and losing interests in science. In order to further investigate the relationship between mathematics knowledge and science understanding, the current study examined 793 high school students' understanding of the pH value. As a measure of the molar concentration of hydrogen ions in the solution, the pH value is an appropriate example to explore what a student mathematical structure of logarithm is and how they interpret the proportional relationship of numbers for scientific explanation. To the end, students were asked to write their responses on a questionnaire that is composed of nine content domain questions and four affective domain questions. Data analysis of this study provides information for the relationship between student understanding of the pH value and related mathematics knowledge.