• 제목/요약/키워드: additive ${\rho}$-functional equation

검색결과 3건 처리시간 0.016초

AN ADDITIVE FUNCTIONAL INEQUALITY

  • Lee, Sung Jin;Park, Choonkil;Shin, Dong Yun
    • Korean Journal of Mathematics
    • /
    • 제22권2호
    • /
    • pp.317-323
    • /
    • 2014
  • In this paper, we solve the additive functional inequality $${\parallel}f(x)+f(y)+f(z){\parallel}{\leq}{\parallel}{\rho}f(s(x+y+z)){\parallel}$$, where s is a nonzero real number and ${\rho}$ is a real number with ${\mid}{\rho}{\mid}$ < 3. Moreover, we prove the Hyers-Ulam stability of the above additive functional inequality in Banach spaces.

ADDITIVE ρ-FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN BANACH SPACE

  • Paokanta, Siriluk;Shim, Eon Hwa
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제25권3호
    • /
    • pp.219-227
    • /
    • 2018
  • In this paper, we solve the additive ${\rho}$-functional equations $$(0.1)\;f(x+y)+f(x-y)-2f(x)={\rho}\left(2f\left({\frac{x+y}{2}}\right)+f(x-y)-2f(x)\right)$$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < 1, and $$(0.2)\;2f\left({\frac{x+y}{2}}\right)+f(x-y)-2f(x)={\rho}(f(x+y)+f(x-y)-2f(x))$$, where ${\rho}$ is a fixed non-Archimedean number with ${\mid}{\rho}{\mid}$ < |2|. Furthermore, we prove the Hyers-Ulam stability of the additive ${\rho}$-functional equations (0.1) and (0.2) in non-Archimedean Banach spaces.

ADDITIVE ρ-FUNCTIONAL EQUATIONS IN β-HOMOGENEOUS F-SPACES

  • Shim, EunHwa
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제24권4호
    • /
    • pp.243-251
    • /
    • 2017
  • In this paper, we solve the additive ${\rho}-functional$ equations (0.1) $f(x+y)+f(x-y)-2f(x)={\rho}(2f(\frac{x+y}{2})+f(x-y)-2f(x))$, and (0.2) $2f(\frac{x+y}{2})+f(x-y)-2f(x)={\rho}(f(x+y)+f(x-y)-2f(x))$, where ${\rho}$ is a fixed (complex) number with ${\rho}{\neq}1$, Using the direct method, we prove the Hyers-Ulam stability of the additive ${\rho}-functional$ equations (0.1) and (0.2) in ${\beta}-homogeneous$ (complex) F-spaces.