• Title/Summary/Keyword: addition tests

Search Result 3,852, Processing Time 0.03 seconds

Resistance to Hydrogen Embrittlement of Ultra-high Strength Pearlitic Bolt (펄라이트 조직을 갖는 초고강도 볼트의 수소취성 저항성)

  • Ahjeong Lyu;Young-Kook Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.15-21
    • /
    • 2023
  • Recently, ultra-high strength bolts have been developed for weight lightening of a vehicle and fuel efficiency. However, some amount of diffusible H is absorbed into the bolt during its manufacturing process so that H embrittlement (HE) often occurs particularly in high strength bolts with a tempered martensitic microstructure. This brings attention to ultra-high strength pearlitic bolts with a high resistance to HE. Therefore, in this study the HE resistance of the 1.6 GPa grade pearlitic bolt was evaluated through tightening tests and slow strain rate tests (SSRTs), and fracture surfaces of failed bolts were comparatively observed. A critical H content for the tightening test turned out to be ~0.23-0.35 mass ppm. The bolt with a diffusible H content of ~0.35 mass ppm was fractured during the tightening test, showing a quasi-cleavage fracture surface, indicating the occurrence of HE. In addition, the bolt underwent premature elastic failure during the SSRT. This implies that the HE resistance of high strength bolts can be evaluated by both tightening test and SSRT.

Effects of normal stress, shearing rate, PSD and sample size on behavior of ballast in direct shear tests using DEM simulation

  • Md Hussain;Syed Khaja Karimullah Hussaini
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Ballast particles have an irregular shape and are discrete in nature. Due to the discrete nature of ballast, it exhibits complex mechanical behaviour under loading conditions. The discrete element method (DEM) can model the behaviour of discrete particles under a multitude of loading conditions. DEM is used in this paper to simulate a series of three-dimensional direct shear tests in order to investigate the shear behaviour of railway ballast and its interaction at the microscopic level. Particle flow code in three dimension (PFC3D) models the irregular shape of ballast particles as clump particles. To investigate the influence of particle size distribution (PSD), real PSD of Indian railway ballast specification IRS:GE:1:2004, China high-speed rail (HSR) and French rail specifications are generated. PFC3D built-in linear contact model is used to simulate the interaction of ballast particles under various normal stresses, shearing rate and shear box sizes. The results indicate how shear resistance and volumetric changes in ballast assembly are affected by normal stress, shearing rate, PSD and shear box size. In addition to macroscopic behaviour, DEM represents the microscopic behaviour of ballast particles in the form of particle displacement at different stages of the shearing process.

Influence of Dicyclopentadiene Resin on Abrasion Behavior of Silica-Filled SBR Compounds Using Different Abrasion Testers

  • Eunji Chae;Seong Ryong Yang;Seok Hyun Cho;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.3
    • /
    • pp.103-111
    • /
    • 2023
  • The abrasion resistances of silica-filled styrene-butadiene rubber (SBR) compounds prepared with and without dicyclopentadiene resin (SBR-R and SBR-0, respectively) were studied using four different abrasion testers, namely cut and chip (CC), Lambourn, DIN, and laboratory abrasion tester (LAT100). The effect of the resin on the abrasion behavior was elucidated by analyzing the morphologies and size distributions of wear particles. All the wear particles had rough surfaces, but those obtained in the Lambourn abrasion test exhibited relatively smooth surfaces. The size distributions of the wear particles showed different trends depending on the abrasion tester and the rubber compound; however, most of the wear particles were larger than 1000 ㎛. The SBR-R sample showed a wide range of particle sizes (from 63 ㎛) in the LAT100 abrasion test and majority of the wear particles were 500-1000 ㎛, whereas the SBR-0 sample had the most distribution of larger than 1000 ㎛. The abrasion rates of SBR-0 sample were lower than those of the SBR-R sample for the CC and LAT100 abrasion tests, but the Lambourn abrasion test result showed the opposite trend. Addition of the resin influenced the abrasion behavior, however the effect varied depending on the type of abrasion tests.

Refined finite element modelling of circular CFST bridge piers subjected to the seismic load

  • Faxing Ding;Qingyuan Xu;Hao Sun;Fei Lyu
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.643-658
    • /
    • 2024
  • To date, shell-solid and fibre element model analysis are the most commonly used methods to investigate the seismic performance of concrete-filled steel tube (CFST) bridge piers. However, most existing research does not consider the loss of bearing capacity caused by the fracture of the outer steel tube. To fill this knowledge gap, a refined finite element (FE) model considering the ductile damage of steel tubes and the behaviour of infilled concrete with cracks is established and verified against experimental results of unidirectional, bidirectional cyclic loading tests and pseudo-dynamic loading tests. In addition, a parametric study is conducted to investigate the seismic performance of CFST bridge piers with different concrete strength, steel strength, axial compression ratio, slenderness ratio and infilled concrete height using the proposed model. The validation shows that the proposed refined FE model can effectively simulate the residual displacement of CFST bridge piers subjected to highintensity earthquakes. The parametric analysis indicates that CFST piers hold sufficient strength reserves and sound deformation capacity and, thus, possess excellent application prospects for bridge construction in high-intensity areas.

A Study on the Physical Properties of Concrete with Three-dimensional Fiber Application (입체 섬유 적용 콘크리트의 물리적 특성에 관한 연구)

  • Jae-Min Lee;Il-Young Jang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.519-525
    • /
    • 2024
  • In this paper, a study on the physical properties of mortar applying 3D Textile was conducted to compensate for the shortcomings of the existing concrete surface repair and reinforcement method. In the tests conducted to analyze the physical properties, compressive strength, flexural strength, and dynamic modulus measurement tests were conducted. As a result of the compressive strength test, as the number of surfaces to which the stereoscopic fiber was applied increased, the amount of displacement and strength reduction rate increased, and the flexural strength also increased as the number of surfaces to which the stereoscopic fiber was applied increased. In addition, it was confirmed that the use of stereoscopic fibers tended to decrease the dynamic modulus of elasticity. This result is a characteristic of the application of stereoscopic fibers, and it caused a decrease in compressive strength due to a decrease in the mortar content of the part to which the stereoscopic fib er was applied, and the high tensile force of the stereoscopic fiber is believed to have affected the increase in flexural strength.

Investigation of Development of Bumper Back-Beam Using a Thermoplastic Polyolefin (열가소성 폴리올레핀으로 구성된 범퍼 후방 보 개발에 관한 연구)

  • Ahn, Dong-Gyu;Kim, Se-Hun;Park, Gun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.896-905
    • /
    • 2012
  • Recently, the application of the plastic material to automotive components and structures has steadily increased to satisfy demands on the saving of overall weight and the improvement of energy efficiency. The objective of this paper is to investigate the development of a bumper back-beam using a thermoplastic olefin (TPO). The bumper back-beam was designed to be manufactured from the injection molding process. In order to obtain a proper design of the bumper back-beam, three-dimensional finite element analyses were performed for various design alternatives. Stress-strain curves for different strain rates were measured by high speed tensile tests of the TPO to consider strain rate effects in the FEA. The influence of the sectional shape and the rib formation on the contact force-intrusion curves, the deflection and the energy absorption rate of the bumper back-beam was examined. From the results of the examination, a proper design of the bumper back-beam was acquired. The bumper back-beam consisting of TPO was fabricated from the injection moulding process and the vibration welding. Pendulum crash tests were carried out using the fabricated bumper back-beam. The results of the tests showed that the designed bumper back-beam can satisfy requirements of the federal motor vehicle safety standard (FMVSS). Through the comparison of the previously designed bumper back-beam with the newly designed bumper back beam, it was noted that the weight of the designed bumper back-beam is lighter than that of the previously designed bumper back beam by nearly 16 %. In addition, it was considered that the newly designed bumper back beam can improve recycling of the bumper back-beam.

Pullout Capacity of Screw Anchor Piles Using Field Pull-out Tests (현장인발시험을 통한 Screw Anchor Pile의 인발저항특성)

  • Yoo, Chung-Sik;Kim, Dae-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.5-16
    • /
    • 2014
  • This paper presents the results of an investigation into the pullout characteristics of screw anchor pile using field pullout tests. A series of field pullout tests were performed on screw anchor piles with different geometric characteristics such as shaft and screw diameters. The results indicated that screw anchor piles exhibited significantly higher pullout capacities compared with the same diameter piles without screw. Also observed is that the set-up effect and the grouting significantly increase pullout capacities, although the magnitude of the increase depends on the ground condition. In addition the applicability of prediction methods for helical pile pullout capacity to screw anchor piles was also examined. The results are presented in such a way that the pullout characteristics of screw anchor piles with different installation conditions can be identified. Practical implications of the findings are discussed.

The effect of hydrated lime on the petrography and strength characteristics of Illite clay

  • Rastegarnia, Ahmad;Alizadeh, Seyed Mehdi Seyed;Esfahani, Mohammad Khaleghi;Amini, Omid;Utyuzh, Anatolij Sergeevich
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.143-152
    • /
    • 2020
  • In this research, soil samples of the Kerman sedimentary basin, Iran, were investigated through laboratory tests such as petrography (Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF) and X-Ray Diffraction (XRD)), physical and mechanical characteristics tests. The soil in this area is dominantly CL. The petrography results showed that the dominant clay mineral is Illite. This soil has made some problems in the earth dams due to the low shear strength. In this study, a set of samples were prepared by adding different amounts of lime. Next, the petrography and strength tests at the optimum moisture content were performed. The results of SEM analysis showed substantial changes in the soil structure after the addition of lime. The primary structure was porous and granular that was changed to a uniform and solid after the lime was added. According to XRD results, dominant mineral in none stabilized soil and stabilized soil are Illite and calcite, respectively. The pozzolanic reaction resulted in the reduction of clay minerals in the stabilized samples and calcite was known as the soil hardener material that led to an increase in soil strength. An increase in the hydrated lime leads to a decrease in their maximum dry unit weight and an increase in their optimum moisture content. Furthermore, increasing the hydrated lime content enhanced the Unconfined Compressive Strength (UCS) and soil's optimum moisture. An increase in the strength is significantly affected by the curing time and hydrated lime contents, as the maximum compressive strength is achieved at 7% hydrated lime. Moreover, the maximum increase in the California Bearing Ratio (CBR) achieved in clay soils mixed with 8% hydrated lime.

A Study on the Support Characteristics of the High Strength Lightweight Steel Pipe Rockbolt (경량 고강도 강관 록볼트의 지보특성에 관한 연구)

  • Kim, Jong Woo;Kim, Myeong Kyun;Kim, Dong Man;Kim, Kyung Hun;Baek, Jae Wook
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.395-403
    • /
    • 2014
  • In this study, a steel pipe type rockbolt manufactured from special material was developed which has high strength and lightweight characteristics. Achievement of grout filling between rockbolt and hole wall was investigated through grout injection tests. Yield force of the developed rockbolt was also examined through tensile tests, which was compared with that of the deformed bar type rockbolt. In addition, the strength and elongation properties of the developed rockbolt were investigated through pull-out tests at three domestic sites showing different RMR classes. It is finally supposed that the developed rockbolt can be suitable for the permanent tunnel support because it has high strength and high durability rather than deformed bar type rockbolt.

Convergence Correlation Analysis of Physical Characteristics and Functional Movement Screen in Healthy Adults (정상 성인의 신체적 특성과 기능적 움직임 검사에 대한 융합적 상관관계 분석)

  • Kim, Hyun-Seung;Cho, Sung-Hyoun
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.4
    • /
    • pp.87-93
    • /
    • 2020
  • The purpose of this study was to examine the convergence correlation between physical characteristics and functional movement screen(FMS). Overall, 193 adults with normal single measurement values participated in the study. For data analysis, we used the SPSS Ver. 26.0 statistical program to perform t-tests and to determine Pearson's correlation coefficients for variables. Data analysis revealed significant sex differences in the active straight-leg raise and trunk stability push up tests (P<.05). In addition, our data analysis also revealed a negatively correlation between body fat percentage and FMS tests, except in the shoulder mobility and active straight leg raise test. In the active straight leg raise, the quality of functional movement was higher in women than in men; while in the trunk stability push ups, the quality of functional movement was higher in men than in women. Therefore, we conclude that men should reinforce the flexibility of the lower extremities, and females should apply upper body muscular strength for better trunk stability movement.