Kwon, Hee Jae;Lee, Gi Pyo;Kim, Young Jae;Kim, Kwang Gi
Journal of Multimedia Information System
/
제8권2호
/
pp.79-84
/
2021
Detecting brain tumors of different sizes is a challenging task. This study aimed to identify brain tumors using detection algorithms. Most studies in this area use segmentation; however, we utilized detection owing to its advantages. Data were obtained from 64 patients and 11,200 MR images. The deep learning model used was RetinaNet, which is based on ResNet152. The model learned three different types of pre-processing images: normal, general histogram equalization, and contrast-limited adaptive histogram equalization (CLAHE). The three types of images were compared to determine the pre-processing technique that exhibits the best performance in the deep learning algorithms. During pre-processing, we converted the MR images from DICOM to JPG format. Additionally, we regulated the window level and width. The model compared the pre-processed images to determine which images showed adequate performance; CLAHE showed the best performance, with a sensitivity of 81.79%. The RetinaNet model for detecting brain tumors through deep learning algorithms demonstrated satisfactory performance in finding lesions. In future, we plan to develop a new model for improving the detection performance using well-processed data. This study lays the groundwork for future detection technologies that can help doctors find lesions more easily in clinical tasks.
장면 전환 검출은 비디오 분할의 주요 기술로서 하드웨어에서 구현하기 위해서는 실시간 및 자동적 처리가 만족되어야 한다. 현재까지 PMP나 핸드폰 같은 낮은 하드웨어 성능의 단말기에서 실시간으로 적용 가능한 장면 전환 검출 기술은 거의 없다. 이와 같은 단말기들에서 장면 전환 검출의 실시간 적용을 위하여, 본 논문에서는 가변 참조 구간의 적응적 임계값 설정 방법을 이용한 장면 전환 검출 기술을 제안한다. 제안하는 방법은 현재 프레임의 특징값과 가변 참조 구간의 평균 특징값을 비교하여 장면 전환 유무를 결정한다. 제안하는 방법은 프레임의 특징값에 독립적으로 사용할 수 있으며, 가변 참조 구간 동안의 평균 특징값을 이용하여 자동적인 임계값 설정이 가능하다. 동일한 영상에 대한 실험을 통하여 기존의 방법들보다 최고 정확도(precision)에서 0.146, 회수도(recall)에서 0.083, F1에서 0.089 이상 결과가 향상된 것을 확인하였다. 제안한 실시간 SCD 모델을 H사의 PMP에 적용하여 실시간 장면 전환 검출이 가능한 것을 검증하였다. 제안한 방법은 PMP나 핸드폰 같은 휴대용 미디어 재생 장치에서 비디오 데이터를 검색할 때 유용하게 사용될 수 있다.
조영 증강된 CT 영상의 화소값은 조영제에 의해 이산적으로 변한다. 또한 간의 중간부분에서는 간과 유사한 농도값을 갖는 췌장 때문에 간의 분할이 어렵다. 본 논문에서는 조영증강된 CT영상의 화소값의 이산적인 변화와 간과 겹치는 췌장을 제거하기 위하여 부분 히스토램 문턱치 알고리즘을 사용한 간 분할법을 제안한다. 히스토그램 변환 후 간 구조의 농도 값의 범위를 찾기 위한 적응 다봉성 분할과 췌장 제거를 위한 부분 히스토그램 문턱치 알고리즘을 수행한다. 다음으로, 간 이외의 불필요한 대상을 제거하고 경계를 매끈하게 하기 위해 모폴러지 필터링을 수행한다. 제안된 방법을 평가하기 위해 8명의 환자로부터 획득된 CT 영상중 중간부분에서 4개씩 총 32단면을 선택하였다. 부분 히스토그램 문턱치 알고리즘을 사용한 자동 분할법 II와 수동 분할법의 정규화된 평균 면적의 평균은 0.1671과 0.1711이었으며, 이 두 방법은 아주 적은 차이를 보인다. 또, 자동 분할법 II와 수동 분할법의 평균 면적 오차율은 6.8339 % 이다. 이 실험 결과로부터 제안된 자동 간분할 법은 의사에 의해 시행된 수동 분할법과 매우 유사한 수행능력을 갖는다.
본 논문에서는 고해상도의 위성영상을 활용하여 도시의 변화 양상을 분석하기 위하여 SPADE기반의 U-Net과 객체 영역기반 변화탐지 방법을 제안한다. 제안하는 네트워크는 기존의 U-Net에서 공간 정보를 잃지 않기 위해 SPADE를 사용했다. 고해상도 위성영상을 활용한 변화탐지 방법은 계획, 예측 등 다양한 도시 문제를 해결하기 위해 활용할 수 있다. IR-MAD 등 전통적인 방법인 화소 기반의 변화탐지를 수행할 경우, 다중 시기 영상 간의 기후, 계절 변화 등에 의해 화소의 변화가 민감하기 때문에 미변화 지역들이 변화 지역으로 오탐지될 가능성이 매우 크다. 이에 본 논문에서는 시계열 위성영상에서 도시를 구성하는 객체에 대한 변위를 정확하게 탐지하기 위해 도시를 구성하는 주요 공간 객체를 정의하고, 딥러닝 기반 영상 분할을 통해 추출한 후 영역 간의 변위 오차를 분석하여 변화탐지를 수행한다. 변화 양상을 분석하기 위한 공간 객체로 건축물, 도로, 농경지, 비닐하우스, 산림 영역, 수변 영역의 6개로 정의하였다. KOMPSAT-3A 위성영상으로 학습한 각 네트워크 모델을 시계열 KOMPSAT-3 위성영상에 대한 변화탐지를 수행한다. 객관적인 성능 평가를 위한 변화탐지 지표는 F1-score, Kappa를 사용한다. 제안하는 변화탐지 기법은 U-Net, UNet++ 대비 뛰어난 결과를 보이며, 평균 F1 score는 0.77, kappa는 77.29의 성능을 확인할 수 있다.
하천측량은 하천기본계획 및 각종 하천 정비의 기초자료를 취득하기 위해 활용되며 하천의 물리적 형태와 하천 정비 이후의 변화를 예측하기 위해서도 활용된다. 항공수심라이다(ABL: Airborne Bathymetric LiDAR) 시스템은 그린 레이저를 사용하여 수면과 하상을 동시에 측량할 수 있는 시스템으로써 하천의 수심 및 하상 측량에 효과적으로 활용될 수 있다. 항공수심라이다 데이터를 하천 측량에 활용하기 위해서는 취득된 점군 데이터부터 수면과 하상 점들을 분리하고 추출하는 과정이 선행되어야 한다. 본 연구에서는 대표적인 지면필터링 기법인 ATIN(Adaptive Triangular Irregular Network) 알고리즘을 적용하여 항공수심라이다의 점군 데이터로부터 저수심 하천의 수면과 하상 점군을 분리하기 위한 방법론을 구축하고 제안된 방법론의 효용성을 검증하였다. 이를 위해 충청남도 곡교천 일대에서 Leica Chiroptera 4X 센서로부터 취득된 데이터를 이용하여 실험을 수행하였다. 연구결과 수면과 하상에 대한 분류 정확도는 88.8%, Kappa 계수는 0.825를 얻을 수 있었으며, 항공수심라이다 데이터를 하천측량에 효과적으로 활용할 수 있음을 확인하였다.
본 논문에서는 형태학적 처리와 에지 가반 영역 분할을 이용해 환경변화에 강인한 실시간 차선 검출 알고리즘을 제안한다. 매 프레임마다 가장 적절한 임계값을 적용시키기 위해 적응적 임계값을 사용하고 투사변환을 통해 영상의 왜곡을 보정한다. 이 후, 관심영역을 지정하고 에지를 검출해 실시간적으로 차선을 검출한다. 형태학적 처리의 유무에 따른 차선 검출 정확도와 연산 속도를 비교한다. 실험 결과 제안한 알고리즘을 통해 98.8%의 차선 검출율과 프레임 당 36.72ms의 실시간 처리가 가능함을 확인하였다.
본 논문에서는 손목 부착형 카메라의 시점불변 특성을 이용하여 조명 변화에 강인한 손 영역 추출 방법을 제안하고, 추출된 손 영역 정보를 이용하여 손 모양을 인식하는 시스템을 다룬다. 손목 부착형 카메라 장치는 물리적으로 시점불변의 영상을 제공하는 장점이 있으며, 본 논문은 이러한 특성을 적극 활용하여 적응형 히스토그램을 기반으로 베이지안 규칙을 사용하여 손 영역을 추출한다. 사전에 구축된 RGB 히스토그램으로부터 HSV 히스토그램을 생성하고, 현재의 영상으로부터 추출된 손 영역 정보를 이용하여 HSV 히스토그램을 갱신한다. 또한, 사용자 독립모델(User independent model)과 사용자 종속모델(User dependent model)의 장점을 고려하여 사용자가 사용함에 따라 사용자 독립모델에서 사용자 종속모델로 수렴하는 사용자 적응 방법을 제안한다. 제안하는 방법의 인식 성능을 평가하기 위해 16개의 지문자에 대한 인식률을 측정하여 27.91%의 인식률 증가 결과를 얻을 수 있었다.
본 논문은 평행식 스테레오 영상감시 시스템을 이용하여 3차원 공간에서 다중 이동물체를 검출하고, 카메라에서 이동 물체까지의 거리를 측정하는 알고리즘을 제안하였다. 스테레오 영상감시 시스템의 좌, 우측 영상을 입력을 받아 적응형 임계값과 화소귀납 알고리즘(PRA, pixel recursive algorithm)을 사용하여 다중 이동물체 영역을 추출하였다. 그리고 각각의 물체영역을 윈도우 마스크로 검출하고, 다중 이동물체 각각의 위치좌표와 스테레오 시차를 구하였다. 이 시차와 스테레오 비전 시스템의 특성 및 삼각 함수를 이용하여 다중 이동물체의 거리를 측정하였다. 실험결과 거리측정 오차도 7.28%이내에 존재하였으며, 따라서 제안한 알고리즘을 이용하여 시스템을 구현할 경우 스테레오 방범 시스템, 자율 이동로봇 및 스테레오 원격제어 시스템 등에 응용될 수 있을 것이다.
컨테이너 ISO코드 인식시스템은 ISO코드 검출 및 영상 획득, ISO코드 영역 추출, 개별 문자 추출, 문자인식 및 데이터베이스의 5가지 핵심부분으로 구성된다. 이 중에서도 ISO코드 추출의 정확성은 전체 시스템 인식률에 지대한 영향을 줄 수 있는 부분이며, 다양한 컨테이너 종류 및 주위 환경 변화에서도 정확한 추출을 요구한다. 본 논문에서는 획득된 영상을 주위 환경 변화에도 적응 가능한 이 진화 방법을 사용하여 ISO코드 템플릿의 영역을 이 진화하고 ISO코드의 분포를 가지는 후보 영역을 추출한다. 추출된 후보 영역 중에서 ISO코드 문자 분포의 특성을 이용한 검증과정을 통해 최종 영역을 추출하여 ISO코드를 인식하는 시스템을 설계 및 구현하였다. 구현된 시스템을 실시간으로 컨테이너에서 획득한 영상에 적용한 결과 다양한 컨테이너 종류 및 주위 환경변화에서도 ISO코드 영역이 정확히 추출됨을 확인하였다.
분산 비디오 부호화 기법(DVC)은 매우 낮은 복잡도를 갖는 비디오 부호화기를 제공하는데 중요한 역할을 담당하고 있다. 그러나 우수한 비트율-왜곡 성능을 얻기 위해 기존의 대부분의 DVC 기법은 피드백 채널을 통해 패리티 비트 제어를 수행하고 있으며, 이것은 비디오 복호화에 있어 많은 시간을 초래하여 실시간 구현을 위해 꼭 극복해야 할 문제점으로 남아 있다. 이러한 문제점을 해결하고 상업화를 촉진하기 위해, 본 논문에서는 LDPCA 프레임 크기가 복호화 지연 및 전체적인 부호화 성능에 미치는 영향을 분석한다. 먼저 화소 영역 위너-지브 부호화 기법에서 각 비디오 프레임을 일정한 크기의 LDPCA 프레임으로 분할하고, 분할된 LDPCA 프레임별로 시간적 상관성을 이용한 예측 방식과 공간적 상관성을 갖는 예측 방식에 따른 성능을 비교 분석한다. 모의실험을 통하여, 현재 가장 많이 연구되고 있는 QCIF크기의 영상에 대해서는 LDPCA 프레임 크기가 3168크기일 때, 가장 우수한 부호화 성능 및 고속화에 유리함을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.