• Title/Summary/Keyword: adaptive scale change

Search Result 40, Processing Time 0.028 seconds

Adaptive-scale damage detection strategy for plate structures based on wavelet finite element model

  • He, Wen-Yu;Zhu, Songye
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.239-256
    • /
    • 2015
  • An adaptive-scale damage detection strategy based on a wavelet finite element model (WFEM) for thin plate structures is established in this study. Equations of motion and corresponding lifting schemes for thin plate structures are derived with the tensor products of cubic Hermite multi-wavelets as the elemental interpolation functions. Sub-element damages are localized by using of the change ratio of modal strain energy. Subsequently, such damages are adaptively quantified by a damage quantification equation deduced from differential equations of plate structure motion. WFEM scales vary spatially and change dynamically according to actual needs. Numerical examples clearly demonstrate that the proposed strategy can progressively locate and quantify plate damages. The strategy can operate efficiently in terms of the degrees-of-freedom in WFEM and sensors in the vibration test.

A wavelet finite element-based adaptive-scale damage detection strategy

  • He, Wen-Yu;Zhu, Songye;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.285-305
    • /
    • 2014
  • This study employs a novel beam-type wavelet finite element model (WFEM) to fulfill an adaptive-scale damage detection strategy in which structural modeling scales are not only spatially varying but also dynamically changed according to actual needs. Dynamical equations of beam structures are derived in the context of WFEM by using the second-generation cubic Hermite multiwavelets as interpolation functions. Based on the concept of modal strain energy, damage in beam structures can be detected in a progressive manner: the suspected region is first identified using a low-scale structural model and the more accurate location and severity of the damage can be estimated using a multi-scale model with local refinement in the suspected region. Although this strategy can be implemented using traditional finite element methods, the multi-scale and localization properties of the WFEM considerably facilitate the adaptive change of modeling scales in a multi-stage process. The numerical examples in this study clearly demonstrate that the proposed damage detection strategy can progressively and efficiently locate and quantify damage with minimal computation effort and a limited number of sensors.

An Anti-occlusion and Scale Adaptive Kernel Correlation Filter for Visual Object Tracking

  • Huang, Yingping;Ju, Chao;Hu, Xing;Ci, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2094-2112
    • /
    • 2019
  • Focusing on the issue that the conventional Kernel Correlation Filter (KCF) algorithm has poor performance in handling scale change and obscured objects, this paper proposes an anti-occlusion and scale adaptive tracking algorithm in the basis of KCF. The average Peak-to Correlation Energy and the peak value of correlation filtering response are used as the confidence indexes to determine whether the target is obscured. In the case of non-occlusion, we modify the searching scheme of the KCF. Instead of searching for a target with a fixed sample size, we search for the target area with multiple scales and then resize it into the sample size to compare with the learnt model. The scale factor with the maximum filter response is the best target scaling and is updated as the optimal scale for the following tracking. Once occlusion is detected, the model updating and scale updating are stopped. Experiments have been conducted on the OTB benchmark video sequences for compassion with other state-of-the-art tracking methods. The results demonstrate the proposed method can effectively improve the tracking success rate and the accuracy in the cases of scale change and occlusion, and meanwhile ensure a real-time performance.

Effective Covariance Tracker based on Adaptive Foreground Segmentation in Tracking Window (적응적인 물체분리를 이용한 효과적인 공분산 추적기)

  • Lee, Jin-Wook;Cho, Jae-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.8
    • /
    • pp.766-770
    • /
    • 2010
  • In this paper, we present an effective covariance tracking algorithm based on adaptive size changing of tracking window. Recent researches have advocated the use of a covariance matrix of object image features for tracking objects instead of the conventional histogram object models used in popular algorithms. But, according to the general covariance tracking algorithm, it can not deal with the scale changes of the moving objects. The scale of the moving object often changes in various tracking environment and the tracking window(or object kernel) has to be adapted accordingly. In addition, the covariance matrix of moving objects should be adaptively updated considering of the tracking window size. We provide a solution to this problem by segmenting the moving object from the background pixels of the tracking window. Therefore, we can improve the tracking performance of the covariance tracking method. Our several simulations prove the effectiveness of the proposed method.

Developing an Urban Planning Model for Climate Change Adaptation

  • Kim, Jong-Kon;Rhim, Joo-Ho;Lee, Sung-Hee
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.51-53
    • /
    • 2015
  • As abnormal climate phenomena occur more frequently due to climate change, damage which results from meteorological disaster increases accordingly and its scale and variety are becoming wider. This paper draws out planning and design elements and application techniques to build cities more adaptive to climate change from urban development cases in US and Europe. An urban model is suggested, that enables built environment to be more resilient to risks caused by climate change is applicable to urban development projects in practice.

  • PDF

IPA Analysis of Agricultural Climate Adaptation Policies (농업부문 기후변화 대응정책의 IPA분석)

  • Sang-ho Lee;Jae-ho Hong
    • Journal of Agricultural Extension & Community Development
    • /
    • v.30 no.4
    • /
    • pp.213-227
    • /
    • 2023
  • This paper aims to examine the farmers' perceptions of the importance and feasibility of climate change awareness and adaptive measures in agriculture, utilizing paired sample t-tests and Importance-Performance Analysis (IPA). Significant differences were found in farmers' views on the importance and urgency of climate change issues, with specific factors standing out. The IPA analysis identified key issues requiring sustained attention, including climate change magnitude, extreme weather events, livestock damage scale, pest fluctuations, and variability in flowering periods. Additionally, the study revealed significant disparities in farmers' perceptions of the importance and feasibility of adaptive measures, except for specific items related to heat indices.

An Adaptive Contrast Enhancement Method using Dynamic Range Segmentation for Brightness Preservation (밝기 보존을 위한 동적 영역 분할을 이용한 적응형 명암비 향상기법)

  • Park, Gyu-Hee;Cho, Hwa-Hyun;Lee, Seung-Jun;Yun, Jong-Ho;Chon, Myung-Ryul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.14-21
    • /
    • 2008
  • In this paper, we propose an adaptive contrast enhancement method using dynamic range segmentation. Histogram Equalization (HE) method is widely used for contrast enhancement. However, histogram equalization method is not suitable for commercial display because it may cause undesirable artifacts due to the significant change in brightness. The proposed algorithm segments the dynamic range of the histogram and redistributes the pixel intensities by the segment area ratio. The proposed method may cause over compressed effect when intensity distribution of an original image is concentrated in specific narrow region. In order to overcome this problem, we introduce an adaptive scale factor. The experimental results show that the proposed algorithm suppresses the significant change in brightness and provides wide histogram distribution compared with histogram equalization.

An Adaptive Dynamic Range Linear Stretching Method for Contrast Enhancement (영상 강조를 위한 Adaptive Dynamic Range Linear Stretching 기법)

  • Kim, Yong-Min;Choi, Jae-Wan;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.4
    • /
    • pp.395-401
    • /
    • 2010
  • Image enhancement algorithm aims to improve the visual quality of low contrast image through eliminating the noise and blurring, increasing contrast, and raising detail. This paper proposes adaptive dynamic range linear stretching(ADRLS) algorithm based on advantages of existing methods. ADRLS method is focused on generating sub-histograms of the majority through partitioning the histogram of input image and applying adaptive scale factor. Generated sub-histograms are finally applied by linear stretching(LS) algorithm. In order to validate proposed method, it is compared with LS and histogram equalization(HE) algorithm generally used. As the result, the proposed method show to improve contrast of input image and to preserve distinct characteristics of histogram by controlling excessive change of brightness.

Performance Improvement of Packet Loss Concealment Algorithm in G.711 Using Adaptive Signal Scale Estimation (적응적 신호 크기 예측을 이용한 G.711 패킷 손실 은닉 알고리즘의 성능향상)

  • Kim, Tae-Ha;Lee, In-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.403-409
    • /
    • 2015
  • In this paper, we propose Packet Loss Concealment (PLC) method using adaptive signal scale estimation for performance improvement of G.711 PLC. The conventional method controls a gain using 20 % attenuation factor when continuous loss occurs. However, this method lead to deterioration because that don't consider the change of signal. So, we propose gain control by adaptive signal scale estimation through before and after frame information using Least Mean Square (LMS) predictor. Performance evaluation of proposed algorithm is presented through Perceptual Evaluation of Speech Quality (PESQ) evaulation.

Optimal Spatial Scale for Land Use Change Modelling : A Case Study in a Savanna Landscape in Northern Ghana (지표피복변화 연구에서 최적의 공간스케일의 문제 : 가나 북부지역의 사바나 지역을 사례로)

  • Nick van de Giesen;Paul L. G. Vlek;Park Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.2 s.107
    • /
    • pp.221-241
    • /
    • 2005
  • Land Use and Land Cover Changes (LUCC) occur over a wide range of space and time scales, and involve complex natural, socio-economic, and institutional processes. Therefore, modelling and predicting LUCC demands an understanding of how various measured properties behave when considered at different scales. Understanding spatial and temporal variability of driving forces and constraints on LUCC is central to understanding the scaling issues. This paper aims to 1) assess the heterogeneity of land cover change processes over the landscape in northern Ghana, where intensification of agricultural activities has been the dominant land cover change process during the past 15 years, 2) characterise dominant land cover change mechanisms for various spatial scales, and 3) identify the optimal spatial scale for LUCC modelling in a savanna landscape. A multivariate statistical method was first applied to identify land cover change intensity (LCCI), using four time-sequenced NDVI images derived from LANDSAT scenes. Three proxy land use change predictors: distance from roads, distance from surface water bodies, and a terrain characterisation index, were regressed against the LCCI using a multi-scale hierarchical adaptive model to identify scale dependency and spatial heterogeneity of LUCC processes. High spatial associations between the LCCI and land use change predictors were mostly limited to moving windows smaller than 10$\times$10km. With increasing window size, LUCC processes within the window tend to be too diverse to establish clear trends, because changes in one part of the window are compensated elsewhere. This results in a reduced correlation between LCCI and land use change predictors at a coarser spatial extent. The spatial coverage of 5-l0km is incidentally equivalent to a village or community area in the study region. In order to reduce spatial variability of land use change processes for regional or national level LUCC modelling, we suggest that the village level is the optimal spatial investigation unit in this savanna landscape.