• Title/Summary/Keyword: adaptive routing algorithm

Search Result 100, Processing Time 0.026 seconds

A Modified E-LEACH Routing Protocol for Improving the Lifetime of a Wireless Sensor Network

  • Abdurohman, Maman;Supriadi, Yadi;Fahmi, Fitra Zul
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.845-858
    • /
    • 2020
  • This paper proposes a modified end-to-end secure low energy adaptive clustering hierarchy (ME-LEACH) algorithm for enhancing the lifetime of a wireless sensor network (WSN). Energy limitations are a major constraint in WSNs, hence every activity in a WSN must efficiently utilize energy. Several protocols have been introduced to modulate the way a WSN sends and receives information. The end-to-end secure low energy adaptive clustering hierarchy (E-LEACH) protocol is a hierarchical routing protocol algorithm proposed to solve high-energy dissipation problems. Other methods that explore the presence of the most powerful nodes on each cluster as cluster heads (CHs) are the sparsity-aware energy efficient clustering (SEEC) protocol and an energy efficient clustering-based routing protocol that uses an enhanced cluster formation technique accompanied by the fuzzy logic (EERRCUF) method. However, each CH in the E-LEACH method sends data directly to the base station causing high energy consumption. SEEC uses a lot of energy to identify the most powerful sensor nodes, while EERRCUF spends high amounts of energy to determine the super cluster head (SCH). In the proposed method, a CH will search for the nearest CH and use it as the next hop. The formation of CH chains serves as a path to the base station. Experiments were conducted to determine the performance of the ME-LEACH algorithm. The results show that ME-LEACH has a more stable and higher throughput than SEEC and EERRCUF and has a 35.2% better network lifetime than the E-LEACH algorithm.

Polymorphic Path Transferring for Secure Flow Delivery

  • Zhang, Rongbo;Li, Xin;Zhan, Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2805-2826
    • /
    • 2021
  • In most cases, the routing policy of networks shows a preference for a static one-to-one mapping of communication pairs to routing paths, which offers adversaries a great advantage to conduct thorough reconnaissance and organize an effective attack in a stress-free manner. With the evolution of network intelligence, some flexible and adaptive routing policies have already proposed to intensify the network defender to turn the situation. Routing mutation is an effective strategy that can invalidate the unvarying nature of routing information that attackers have collected from exploiting the static configuration of the network. However, three constraints execute press on routing mutation deployment in practical: insufficient route mutation space, expensive control costs, and incompatibility. To enhance the availability of route mutation, we propose an OpenFlow-based route mutation technique called Polymorphic Path Transferring (PPT), which adopts a physical and virtual path segment mixed construction technique to enlarge the routing path space for elevating the security of communication. Based on the Markov Decision Process, with considering flows distribution in the network, the PPT adopts an evolution routing path scheduling algorithm with a segment path update strategy, which relieves the press on the overhead of control and incompatibility. Our analysis demonstrates that PPT can secure data delivery in the worst network environment while countering sophisticated attacks in an evasion-free manner (e.g., advanced persistent threat). Case study and experiment results show its effectiveness in proactively defending against targeted attacks and its advantage compared with previous route mutation methods.

Adaptive method for selecting Cluster Head according to the energy of the sensor node

  • Kim, Yong Min;LEE, WooSuk;Kwon, Oh Seok;Jung, Kyedong;Lee, Jong-Yong
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.19-26
    • /
    • 2016
  • The most important factor in the wireless sensor network is the use of effective energy and increase in lifetime of the individual nodes in order to operate the wireless network more efficiently. For this purpose, various routing protocols have been developed. The LEACH such a protocol, well known among typical cluster routing protocols. However, when a cluster head is selected, the energy consumption may not be equal because it does not take into account the energy of the nodes. In this paper, we seek to improve the cluster head selection method according to residual energy of each sensor node. This method then adaptively applies the LEACH algorithm and the cluster head section algorithm with consideration of node energy in accordance with the energy of the whole sensor field. Through the simulation, it was found that this proposed algorithm was effective.

Application of Self-Adaptive Meta-Heuristic Optimization Algorithm for Muskingum Flood Routing (Muskingum 홍수추적을 위한 자가적응형 메타 휴리스틱 알고리즘의 적용)

  • Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.29-37
    • /
    • 2020
  • In the past, meta-heuristic optimization algorithms were developed to solve the problems caused by complex nonlinearities occurring in natural phenomena, and various studies have been conducted to examine the applicability of the developed algorithms. The self-adaptive vision correction algorithm (SAVCA) showed excellent performance in mathematics problems, but it did not apply to complex engineering problems. Therefore, it is necessary to review the application process of the SAVCA. The SAVCA, which was recently developed and showed excellent performance, was applied to the advanced Muskingum flood routing model (ANLMM-L) to examine the application and application process. First, initial solutions were generated by the SAVCA, and the fitness was then calculated by ANLMM-L. The new value selected by a local and global search was put into the SAVCA. A new solution was generated, and ANLMM-L was applied again to calculate the fitness. The final calculation was conducted by comparing and improving the results of the new solution and existing solutions. The sum of squares (SSQ) was used to calculate the error between the observed and calculated runoff, and the applied results were compared with the current models. SAVCA, which showed excellent performance in the Muskingum flood routing model, is expected to show excellent performance in a range of engineering problems.

Fuzzy based Adaptive Routing algorithm and simulation in Wireless Sensor Networks (무선 센서 네트워크에서 퍼지 기반의 적응형 라우팅 알고리즘 및 시뮬레이션)

  • Hong, Soon-Oh;Cho, Tae-Ho
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.25-29
    • /
    • 2005
  • 무선 센서 네트워크에서 센서 노드는 배터리와 같은 제한적인 전원을 가지고 있기 때문에, 센서 노드의 수명을 연장하기 위하여 에너지 효율성을 고려한 다양한 라우팅 프로토콜이 연구되고 있다. 하지만 기존에 제안된 라우팅 프로토콜들은 특정 상황 및 응용에 특화되어 있기 때문에, 하드웨어에 내장시킨 단일 라우팅 프로토콜만으로는 동적으로 변화하는 네트워크 상에서 에너지 효율성을 보장할 수 없다는 문제점이 있다. 본 연구에서는 이러한 문제점을 개선하기 위하여 퍼지 추론 시스템을 기반으로, 다양한 후보 라우팅 프로토콜 중 현재 네트워크 상황에 적합한 라우팅 프로토콜을 선택하여, 이를 동적으로 센서 노드에 적재 혹은 교체하도록 하는 퍼지 기반의 적응형 라우팅 알고리즘을 제안한다. 또한 시뮬레이션을 수행하여 동적인 네트워크 상황 하에서 제안된 라우팅 알고리즘을 사용한 경우가 기존의 단일 라우팅 프로토콜만을 사용한 경우보다 에너지 효율적임을 검증한다.

  • PDF

Adaptive analysis of characteristic nodes using prediction method in DTN (DTN에서 예측 기반한 적응적 노드 속성 분석)

  • Dho, Yoon-Hyung;Jeon, Il-Kyu;Oh, Young-Jun;Lee, Kang-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2771-2778
    • /
    • 2014
  • In this paper, we propose an algorithm that select efficient relay nodes using information of network environment and nodes. The proposed algorithm can be used changeable weight factors as following network environment in node density. The routing protocols adopting store-carry-forward method are used for solving network problems occurred by unstable end-to-end connection in Delay Tolerant Networks(DTNs). Exiting DTN routing algorithms have problems that large latency and overhead because of deficiency of network informations. The proposed algorithm could be provide a solution this problems using changeable weight factor and prediction of network environment. Thus, selected relay nodes work efficiently in unstable and stressed network environment. Simulation results show that enhancement performance as overhead, delivery ratio, average latency compared to exiting DTN routing algorithm.

Adaptive Multipath Routing Algorithm for Low-power Lossy Networks (저전력 손실 네트워크에서의 적응형 다중경로 라우팅 알고리즘)

  • Kim, Seunghyun;Joung, Jinoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.91-96
    • /
    • 2019
  • For a wireless sensor network in general, efficient routing decision is important because wireless connections are not stable, sensitive to external interference, and topology changes dynamically. RPL standard of IETF is not flexible to various environmental changes and causes packet loss and delay due to topological imbalance. Sending packets through multipath can partially remedy this problem. The multipath routing, however, can introduce significant delay overhead by allocating unnecessary timeslots. This paper proposes an RPL using multipath adaptively according to network conditions. We show by simulations that the proposed algorithm is more efficient than the basic RPL and the multipath RPL.

A Localized Adaptive QoS Routing Scheme Using POMDP and Exploration Bonus Techniques (POMDP와 Exploration Bonus를 이용한 지역적이고 적응적인 QoS 라우팅 기법)

  • Han Jeong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3B
    • /
    • pp.175-182
    • /
    • 2006
  • In this paper, we propose a Localized Adaptive QoS Routing Scheme using POMDP and Exploration Bonus Techniques. Also, this paper shows that CEA technique using expectation values can be simply POMDP problem, because performing dynamic programming to solve a POMDP is highly computationally expensive. And we use Exploration Bonus to search detour path better than current path. For this, we proposed the algorithm(SEMA) to search multiple path. Expecially, we evaluate performances of service success rate and average hop count with $\phi$ and k performance parameters, which is defined as exploration count and intervals. As result, we knew that the larger $\phi$, the better detour path search. And increasing n increased the amount of exploration.

Optimal LEACH Protocol with Improved Bat Algorithm in Wireless Sensor Networks

  • Cai, Xingjuan;Sun, Youqiang;Cui, Zhihua;Zhang, Wensheng;Chen, Jinjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2469-2490
    • /
    • 2019
  • A low-energy adaptive clustering hierarchy (LEACH) protocol is a low-power adaptive cluster routing protocol which was proposed by MIT's Chandrakasan for sensor networks. In the LEACH protocol, the selection mode of cluster-head nodes is a random selection of cycles, which may result in uneven distribution of nodal energy and reduce the lifetime of the entire network. Hence, we propose a new selection method to enhance the lifetime of network, in this selection function, the energy consumed between nodes in the clusters and the power consumed by the transfer between the cluster head and the base station are considered at the same time. Meanwhile, the improved FTBA algorithm integrating the curve strategy is proposed to enhance local and global search capabilities. Then we combine the improved BA with LEACH, and use the intelligent algorithm to select the cluster head. Experiment results show that the improved BA has stronger optimization ability than other optimization algorithms, which the method we proposed (FTBA-TC-LEACH) is superior than the LEACH and LEACH with standard BA (SBA-LEACH). The FTBA-TC-LEACH can obviously reduce network energy consumption and enhance the lifetime of wireless sensor networks (WSNs).

Adaptive routing algorithm for equitable load balancing with propagation delay (전송지연을 적용한 적응균등부하조절 경로설정 알고리듬)

  • 주만식;백이현;주판유;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.12
    • /
    • pp.2635-2643
    • /
    • 1997
  • In this paepr, a routing algorithm is proposed in order to reduce average end-to-end delay and congesting in the high speed network. The algorithm proposed here uses the existing one which adaptively modifies routes and the amount of traffic allocated to each link as user traffic partterns flutuate. This algorithm is ELB(Equitable Load Balancing). Also, the new algorithm considers the proportional to the distance between source and destination. It reduces congestion from the ELB and average end-to-end delay from the propagation dealy concepts respectively. Through the simulation, it shows that the algorithm proposed here reduces average end-to-end delay over low load to high load, and it also guarantees the congestion control.

  • PDF