• Title/Summary/Keyword: adaptive nonlinear control

Search Result 748, Processing Time 0.026 seconds

Adaptive Nonlinear Guidance Considering Target Uncertainties and Control Loop Dynamics (목표물의 불확실성과 제어루프 특성을 고려한 비선형 적응 유도기법)

  • 좌동경;최진영;송찬호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.320-328
    • /
    • 2003
  • This paper proposes a new nonlinear adaptive guidance law. Fourth order state equation for integrated guidance and control loop is formulated considering target uncertainties and control loop dynamics. The state equation is further changed into the normal form by nonlinear coordinate transformation. An adaptive nonlinear guidance law is proposed to compensate for the uncertainties In both target acceleration and control loop dynamics. The proposed law adopts the sliding mode control approach with adaptation fer unknown bound of uncertainties. The present approach can effectively solve the existing guidance problem of target maneuver and the limited performance of control loop. We provide the stability analyses and demonstrate the effectiveness of our scheme through simulations.

Robust High Gain Adaptive Output Feedback Control for Nonlinear Systems with Uncertain Nonlinearities in Control Input Term

  • Michino, Ryuji;Mizumoto, Ikuro;Iwai, Zenta;Kumon, Makoto
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • It is well known that one can easily design a high-gain adaptive output feedback control for a class of nonlinear systems which satisfy a certain condition called output feedback exponential passivity (OFEP). The designed high-gain adaptive controller has simple structure and high robustness with regard to bounded disturbances and unknown order of the controlled system. However, from the viewpoint of practical application, it is important to consider a robust control scheme for controlled systems for which some of the assumptions of output feedback stabilization are not valid. In this paper, we design a robust high-gain adaptive output feedback control for the OFEP nonlinear systems with uncertain nonlinearities and/or disturbances. The effectiveness of the proposed method is shown by numerical simulations.

Wavelet Neural Network Based Indirect Adaptive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Choi, Jong-Tae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.118-124
    • /
    • 2004
  • In this paper, we present a indirect adaptive control method using a wavelet neural network (WNN) for the control of chaotic nonlinear systems without precise mathematical models. The proposed indirect adaptive control method includes the off-line identification and on-line control procedure for chaotic nonlinear systems. In the off-line identification procedure, the WNN based identification model identifies the chaotic nonlinear system by using the serial-parallel identification structure and is trained by the gradient-descent method. And, in the on-line control procedure, a WNN controller is designed by using the off-line identification model and is trained by the error back-propagation algorithm. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with applications to the chaotic nonlinear systems.

The nonlinear dynamic control of BLDC motors : an adaptive learning control approach (적응 학습 제어 기법을 이용한 BLDC 모터의 비선형 동력학 제어)

  • 박정동;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.333-336
    • /
    • 1997
  • In this paper, we present a nonlinear dynamic controller for position tracking of brushless dc motors. In constructing the controller, a backstepping-type approach is used under the condition of full state information, while an adaptive controller is adopted for parameter uncertainty throughout the entire electromechanical system. The nonlinear dynamic controller using the adaptive learning technique approach is shown to drive the state variables of system to the desired ones asymptotically and whose effectiveness is also sown via computer simulation.

  • PDF

Nonlinear Adaptive Controller for Robot Manipulator (로봇의 비선형 적응제어기 개발에 관한 연구)

  • 박태욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.419-423
    • /
    • 1996
  • These days, industrial robots are required to have high speed and high precision in doing various tasks. Recently, the adaptive control algorithms for those nonlinear robots have been developed. With spatial vector space, these adaptive algorithms including recursive implementation are simply described. Without sensing joint acceleration and computing the inversion of inertia matrix, these algorithms which include P.D. terms and feedforward terms have global tracking convergence. In this paper, the feasibility of the proposed control method is illustrated by applying to 2 DOF SCARA robot in DSP(Digital Signal Processing).

  • PDF

Decentralized Adaptive Control for Nonlinear Systems with Time-Delayed Interconnections: Intelligent Approach (시간 지연 상호 연계를 가진 비선형 시스템의 분산 적응 제어: 지능적인 접근법)

  • Yoo, Sung-Jin;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.413-419
    • /
    • 2009
  • A decentralized adaptive control method is proposed for large-scale systems with unknown time-delayed nonlinear interconnections unmatched in control inputs. It is assumed that the time-delayed interaction terms are bounded by unknown nonlinear bounding functions. The nonlinear bounding functions and uncertain nonlinear functions of large-scale systems are compensated by the function approximation technique using neural networks. The dynamic surface control method is extended to design the proposed memoryless local controller for each subsystem of uncertain nonlinear large-scale time delay systems. Therefore, although the interconnected systems consist of a large number of subsystems, the proposed controller can be designed simply. We prove that all the signals in the total closed-loop system are semiglobally uniformly bounded and the control errors converge to an adjustable neighborhood of the origin. Finally, an example is given to demonstrate the effectiveness and applicability of the proposed scheme.

Adaptive High Precision Control of Dynamic System Using Friction Compensation Schemes (마찰력 보상 기법을 이용한 동적 시스템의 고 정밀 적응제어)

  • Jeon, Buyng-Gyoon;Jeon, Gi-Joon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.10
    • /
    • pp.555-562
    • /
    • 2000
  • We propose an adaptive nonlinear control algorithm for compensation of the stick-slip friction in a dynamic system. The friction force and mass of the system are estimated and compensated by adaptive control law. Especially, as the nonlinear control input in a small tracking error zone is enlarged by the nonlinear function, the steady state error is significantly reduced. The proposed algorithm is a direct adaptive control method based on the Laypunov stability theory, and its convergence is guaranteed under the bounded noise or torque disturbance. We verified the performance of the proposed algorithm by computer simulation on one-DOF mechanical system with friction.

  • PDF

Adaptive Control of a Single Rod Hydraulic Cylinder - Load System under Unknown Nonlinear Friction

  • Lee Myeong-Ho;Park Hyung-Bae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.251-259
    • /
    • 2005
  • A discrete time model reference adaptive control has been applied in order to compensate the nonlinear friction characteristics in a hydraulic proportional position control system. As nonlinear friction, static and coulomb friction forces are considered and modeled as dead zone and external disturbance respectively. The model reference adaptive control system consists of a cascade combination of the dead zone. external disturbance and linear dynamic block. For adaptive control experiment. the DSP(Digital Signal Processor) board has been interfaced the hydraulic proportional position control system. The experimental results show that the MRAC(Model Reference Adaptive Control) for compensation of static and coulomb friction are very effective.

ADAPTIVEK FUZZY CONTROL BASED ON SPEED GRADIENT ALGORITHM

  • Jeoung, Sacheul;Yoo, Byungkook;Ham, Woonchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.178-182
    • /
    • 1995
  • In this paper, the fuzzy approximator and nonlinear inversion control scheme are considered. An adaptive nonlinear control is proposed based on the speed gradient algorithms proposed by Fradkov. This proposed control scheme is that three types of adaptive law is utilized to approximate the unknown function f by fuzzy logic system in designing the nonlinear inversion controller for the nonlinear system. In order to reduce the approximation errors, the differences of nonlinear function and fuzzy approximator, another three types of adaptive law is also introduced and the stability of proposed control scheme are proven with SG algorithm.

  • PDF

Design of an Adaptive Robust Nonlinear Predictive Controller (적응성을 가진 강인한 비선형 예측제어기 설계)

  • Park, Gee--Yong;Yoon, Ji-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.967-972
    • /
    • 2001
  • In this paper, an adaptive robust nonlinear predictive controller is developed for the continuous time nonlinear systems whose control objective is composed of the system output and its desired value. The basic control law is derived from the continuous time prediction model and its feedback dynamcis shows another from if input and output linearization. In order to cope with the parameter uncertainty, robust control is incorporated into the basic control law and the asymptotic convergence of tracking error to a certain bounded region is guaranteed. For stability and performance improvement within the bounded region, an adaptive control is introduced. Simulation tests for the motion control of an underwater wall-ranging robot confirm the performance improvement and the robustness of this controller.

  • PDF