• 제목/요약/키워드: adaptive neuro-fuzzy inference system

검색결과 161건 처리시간 0.025초

퍼지 Min-Max 네트워크를 이용한 적응 뉴로-퍼지 시스템 (An Adaptive Neuro-Fuzzy System Using Fuzzy Min-Max Networks)

  • 곽근창;김성수;김주식;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.367-367
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian membership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF

2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계 (Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

뉴로 퍼지 시스템을 이용한 비선형 시스템의 IMC 제어기 설계 (Design of IMC Controller for Nonlinear Systems by Using Adaptive Neuro-Fuzzy Inference System)

  • 강정규;김정수;김성호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.236-236
    • /
    • 2000
  • Control of Industrial processes is very difficult due to nonlinear dynamics, effect of disturbances and modeling errors. M.Morari proposed Internal Model Control(IMC) system that can be effectively applied to the systems with model uncertainties and time delays. The advantage of IMC systems is their robustness with respect to a model mismatch and disturbances. But it was difficult to apply for nonlinear systems. Adaptive Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to identify a nonlinear dynamical systems. In this paper, we propose new IMC design method using adaptive neuro-fuzzy inference system for nonlinear plant. Numerical simulation results show that proposed IMC design method has good performance than classical PID controller.

  • PDF

적응 뉴로-퍼지 필터를 이용한 비선형 채널 등화 (Nonlinear Channel Equalization Using Adaptive Neuro-Fuzzy Fiter)

  • 김승석;곽근창;김성수;전병석;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.366-366
    • /
    • 2000
  • In this paper, an adaptive neuro-fuzzy filter using the conditional fuzzy c-means(CFCM) methods is proposed. Usualy, the number of fuzzy rules exponentially increases by applying the grid partitioning of the input space, in conventional adaptive neuro-fuzzy inference system(ANFIS) approaches. In order to solve this problem, CFCM method is adopted to render the clusters which represent the given input and output data. Parameter identification is performed by hybrid learning using back-propagation algorithm and total least square(TLS) method. Finally, we applied the proposed method to the nonlinear channel equalization problem and obtained a better performance than previous works.

  • PDF

EM 알고리즘에 의한 퍼지 규칙생성과 온도 제어 시스템의 설계 (A Fuzzy Rule Extraction by EM Algorithm and A Design of Temperature Control System)

  • 오범진;곽근창;유정웅
    • 조명전기설비학회논문지
    • /
    • 제16권5호
    • /
    • pp.104-111
    • /
    • 2002
  • 본 논문에서는 EM(Expectation-Maximization) 알고리즘을 이용한 자동적인 퍼지 규칙생성과 적응 뉴로-퍼지 제어기(Adaptive Neuro-Fuzzy Controller)의 설계를 제안한다. EM 알고리즘은 가우시안 혼합모델(Gaussian Mixture Model)의 최대우도추정(Maximum Likelihood Estimate)을 위해 사용되어지며 본 논문에서는 규칙생성을 위해 클러스터 중심을 추정한다. 추정된 클러스터는 ANFIS(Adaptive Neuro-Fuzzy Inference System)의 퍼지 규칙과 소속함수를 구축하는데 사용되어진다. 시뮬레이션으로 제안된 적응 뉴로-퍼지 제어기의 성능을 입증하기 위해 목욕물 온도 제어 시스템에 대해 다루고 기존 퍼지 제어기에 비해 적은 규칙의 수와 작은 값의 SAE(Sum of Absolute Error)으로 성능개선을 확인하였다.

온도 제어 시스템을 위한 뉴로-퍼지 제어기의 설계 (The Design of an Adaptive Neuro-Fuzzy Controller for a Temperature Control System)

  • 곽근창;김성수;이상혁;유정웅
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.493-496
    • /
    • 2000
  • In this paper, an adaptive neuro-fuzzy controller using the conditional fuzzy c-means(CFCM) methods is proposed. Usually, the number of fuzzy rules exponentially increases by applying the grid partitioning of the input space, in conventional adaptive neuro-fuzzy inference system(ANFIS) approaches. In order to solve this problem, CFCM method is adopted to render the clusters which represent the given input and output data. Finally, we applied the proposed method to the water path temperature control system and obtained a better performance than previous works.

  • PDF

PCA-based neuro-fuzzy model for system identification of smart structures

  • Mohammadzadeh, Soroush;Kim, Yeesock;Ahn, Jaehun
    • Smart Structures and Systems
    • /
    • 제15권4호
    • /
    • pp.1139-1158
    • /
    • 2015
  • This paper proposes an efficient system identification method for modeling nonlinear behavior of civil structures. This method is developed by integrating three different methodologies: principal component analysis (PCA), artificial neural networks, and fuzzy logic theory, hence named PANFIS (PCA-based adaptive neuro-fuzzy inference system). To evaluate this model, a 3-story building equipped with a magnetorheological (MR) damper subjected to a variety of earthquakes is investigated. To train the input-output function of the PANFIS model, an artificial earthquake is generated that contains a variety of characteristics of recorded earthquakes. The trained model is also validated using the1940 El-Centro, Kobe, Northridge, and Hachinohe earthquakes. The adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. It is demonstrated from the training and validation processes that the proposed PANFIS model is effective in modeling complex behavior of the smart building. It is also shown that the proposed PANFIS produces similar performance with the benchmark ANFIS model with significant reduction of computational loads.

적응 다항식 뉴로-퍼지 네트워크 구조에 관한 연구 (A Study on the Adaptive Polynomial Neuro-Fuzzy Networks Architecture)

  • 오성권;김동원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권9호
    • /
    • pp.430-438
    • /
    • 2001
  • In this study, we introduce the adaptive Polynomial Neuro-Fuzzy Networks(PNFN) architecture generated from the fusion of fuzzy inference system and PNN algorithm. The PNFN dwells on the ideas of fuzzy rule-based computing and neural networks. Fuzzy inference system is applied in the 1st layer of PNFN and PNN algorithm is employed in the 2nd layer or higher. From these the multilayer structure of the PNFN is constructed. In order words, in the Fuzzy Inference System(FIS) used in the nodes of the 1st layer of PNFN, either the simplified or regression polynomial inference method is utilized. And as the premise part of the rules, both triangular and Gaussian like membership function are studied. In the 2nd layer or higher, PNN based on GMDH and regression polynomial is generated in a dynamic way, unlike in the case of the popular multilayer perceptron structure. That is, the PNN is an analytic technique for identifying nonlinear relationships between system's inputs and outputs and is a flexible network structure constructed through the successive generation of layers from nodes represented in partial descriptions of I/O relatio of data. The experiment part of the study involves representative time series such as Box-Jenkins gas furnace data used across various neurofuzzy systems and a comparative analysis is included as well.

  • PDF

뉴로 퍼지 시스템을 이용한 비선형 시스템의 IMC 제어기 설계 (Design of IMC for Nonlinear Systems by Using Adaptive Neuro-Fuzzy Inference System)

  • 김성호;강정규
    • 제어로봇시스템학회논문지
    • /
    • 제7권11호
    • /
    • pp.958-961
    • /
    • 2001
  • Control of Industrial processes is very difficult due to nonlinear dynamics, effect of disturbances and modeling errors. M.Morari proposed Internal Model Control(IMC) system that can be effectively applied to the systems with model uncertainties and time delays. The advantage of IMC is their robustness with respect to a model mismatch and disturbances. But it is difficult to apply for nonlinear systems. ANFIS(Adaptive Neuro-Fuzzy Inference System) which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in ANFIS can be effectively utilized to control a nonlinear systems. In this paper, we propose new ANFIS-based IMC controller for nonlinear systems. Numerical simulation results show that the proposed control scheme has good performances.

  • PDF

적응 뉴로 퍼지추론 기법에 의한 비선형 시스템의 구조 동정에 관한 연구 (Structure Identification of Nonlinear System Using Adaptive Neuro-Fuzzy Inference Technique)

  • 이준탁;정형환;심영진;김형배;박영식
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.298-301
    • /
    • 1996
  • This paper describes the structure Identification of nonlinear function using Adaptive Neuro-Fuzzy Inference Technique(ANFIS). Nonlinear mapping relationship between inputs and outputs were modeled by Sugeno-Takaki's Fuzzy Inference Method. Specially, the consequent parts were identified using a series of 1st order equations and the antecedent parts using triangular type membership function or bell type ones. According to learning Rules of ANFIS, adjustable parameters were converged rapidly and accurately.

  • PDF