• 제목/요약/키워드: adaptive neural control

Search Result 585, Processing Time 0.032 seconds

Neural Network Controller with Dynamic Structure for nonaffine Nonlinear System (불확실한 비선형 계통에 대한 동적인 구조를 가지는 강인한 신경망 제어기 설계)

  • 박장현;서호준;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.384-384
    • /
    • 2000
  • In adaptive neuro-control, neural networks are used to approximate the unknown plant nonlinearities. Until now, most of the papers in the field of controller design fur nonlinear system using neural networks considers the affine system with fixed number of neurons. This paper considers nonaffne nonlinear systems and dynamic variation of the number of neurons. Control laws and adaptive laws for weights are established so that the whole system is stable in the sense of Lyapunov.

  • PDF

A Method for Adaptive Hysteresis Current Control of PWM Inverter Using Neural Network (신경회로망을 이용한 PWM 인버터의 적응 히스테리시스 전류제어 기법)

  • 전태원;최명규
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.382-387
    • /
    • 1998
  • The adaptive hysteresis band current control method using neural network is proposed to hold the switching frequency of PWM inverter constant at any operating points of ac motor. The adaptive hysteresis band equation is derived as the teaching signal of neural network. and then the structure and learning algorithm of the neural network a are suggested. The simulation results show that the switching frequency of PWM inverter is held constant at any operating conditions of ac motor and the proposed method has good transient performance of stator current.

  • PDF

Nonlinear Backstepping Control of SynRM Drive Systems Using Reformed Recurrent Hermite Polynomial Neural Networks with Adaptive Law and Error Estimated Law

  • Ting, Jung-Chu;Chen, Der-Fa
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1380-1397
    • /
    • 2018
  • The synchronous reluctance motor (SynRM) servo-drive system has highly nonlinear uncertainties owing to a convex construction effect. It is difficult for the linear control method to achieve good performance for the SynRM drive system. The nonlinear backstepping control system using upper bound with switching function is proposed to inhibit uncertainty action for controlling the SynRM drive system. However, this method uses a large upper bound with a switching function, which results in a large chattering. In order to reduce this chattering, a nonlinear backstepping control system using an adaptive law is proposed to estimate the lumped uncertainty. Since this method uses an adaptive law, it cannot achiever satisfactory performance. Therefore, a nonlinear backstepping control system using a reformed recurrent Hermite polynomial neural network with an adaptive law and an error estimated law is proposed to estimate the lumped uncertainty and to compensate the estimated error in order to enhance the robustness of the SynRM drive system. Further, the reformed recurrent Hermite polynomial neural network with two learning rates is derived according to an increment type Lyapunov function to speed-up the parameter convergence. Finally, some experimental results and a comparative analysis are presented to verify that the proposed control system has better control performance for controlling SynRM drive systems.

A Neural Network Adaptive Controller for Autonomous Diving Control of an Autonomous Underwater Vehicle

  • Li, Ji-Hong;Lee, Pan-Mook;Jun, Bong-Huan
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.374-383
    • /
    • 2004
  • This paper presents a neural network adaptive controller for autonomous diving control of an autonomous underwater vehicle (AUV) using adaptive backstepping method. In general, the dynamics of underwater robotics vehicles (URVs) are highly nonlinear and the hydrodynamic coefficients of vehicles are difficult to be accurately determined a priori because of variations of these coefficients with different operating conditions. In this paper, the smooth unknown dynamics of a vehicle is approximated by a neural network, and the remaining unstructured uncertainties, such as disturbances and unmodeled dynamics, are assumed to be unbounded, although they still satisfy certain growth conditions characterized by 'bounding functions' composed of known functions multiplied by unknown constants. Under certain relaxed assumptions pertaining to the control gain functions, the proposed control scheme can guarantee that all the signals in the closed-loop system satisfy to be uniformly ultimately bounded (UUB). Simulation studies are included to illustrate the effectiveness of the proposed control scheme, and some practical features of the control laws are also discussed.

Motion Control of an AUV Using a Neural-Net Based Adaptive Controller (신경회로망 기반의 적응제어기를 이용한 AUV의 운동 제어)

  • 이계홍;이판묵;이상정
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.8-15
    • /
    • 2002
  • This paper presents a neural net based nonlinear adaptive controller for an autonomous underwater vehicle (AUV). AUV's dynamics are highly nonlinear and their hydrodynamic coefficients vary with different operational conditions, so it is necessary for the high performance control system of an AUV to have the capacities of learning and adapting to the change of the AUV's dynamics. In this paper a linearly parameterized neural network is used to approximate the uncertainties of the AUV's dynamic, and the basis function vector of network is constructed according to th AUV's physical properties. A sliding mode control scheme is introduced to attenuate the effect of the neural network's reconstruction errors and the disturbances in AUV's dynamics. Using Lyapunov theory, the stability of the presented control system is guaranteed as well as the uniformly boundedness of tracking errors and neural network's weights estimation errors. Finally, numerical simulations for motion control of an AUV are performed to illustrate the effectiveness of the proposed techniques.

Design of Direct Adaptive Controller for Autonomous Underwater Vehicle Steering Control Using Wavelet Neural Network (웨이블릿 신경 회로망을 이용한 자율 수중 운동체 방향 제어기 설계)

  • Seo, Kyoung-Cheol;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1832-1833
    • /
    • 2006
  • This paper presents a design method of the wavelet neural network(WNN) controller based on a direct adaptive control scheme for the intelligent control of Autonomous Underwater Vehicle(AUV) steering systems. The neural network is constructed by the wavelet orthogonal decomposition to form a wavelet neural network that can overcome nonlinearities and uncertainty. In our control method, the control signals are directly obtained by minimizing the difference between the reference track and original signal of AUV model that is controlled through a wavelet neural network. The control process is a dynamic on-line process that uses the wavelet neural network trained by gradient-descent method. Through computer simulations, we demonstrate the effectiveness of the proposed control method.

  • PDF

Adaptive control based on nonlinear dynamical system

  • Sugisaka, Masanori;Eguchi, Katsumasa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.401-405
    • /
    • 1993
  • This paper presents a neuro adaptive control method for nonlinear dynamical systems based on artificial neural network systems. The proposed neuro adaptive controller consists of 3 layers artificial neural network system and parallel PD controller. At the early stage in learning or identification process of the system characteristics the PD controller works mainly in order to compensate for the inadequacy of the learning process and then gradually the neuro contrller begins to work instead of the PD controller after the learning process has proceeded. From the simulation studies the neuro adaptive controller is seen to be robust and works effectively for nonlinear dynamical systems from a practical applicational points of view.

  • PDF

Adaptive PID controller based on error self-recurrent neural networks (오차 자기순환 신경회로망에 기초한 적응 PID제어기)

  • Lee, Chang-Goo;Shin, Dong-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.209-214
    • /
    • 1998
  • In this paper, we are dealing with the problem of controlling unknown nonlinear dynamical system by using neural networks. A novel error self-recurrent(ESR) neural model is presented to perform black-box identification. Through the various outcome of the experiment, a new neural network is seen to be considerably faster than the BP algorithm and has advantages of being less affected by poor initial weights and learning rate. These characteristics make it flexible to design the controller in real-time based on neural networks model. In addition, we design an adaptive PID controller that Keyser suggested by using ESR neural networks, and present a method on the implementation of adaptive controller based on neural network for practical applications. We obtained good results in the case of robot manipulator experiment.

  • PDF

The Design of Indirect Adaptive Controller of Chaotic Nonlinear Systems using Fuzzy Neural Networks (퍼지 신경 회로망을 이용한 혼돈 비선형 시스템의 간접 적응 제어기 설계)

  • 류주훈;박진배최윤호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.437-440
    • /
    • 1998
  • In this paper, the design method of fuzzy neural network(FNN) controller using indirect adaptive control technique is presented for controlling chaotic nonlinear systems. Firstly, the fuzzy model identified with a FNN in off-line process. Secondly, the trained fuzzy model tunes adaptively the control rules of the FNN controller in on-line process. In order to evaluate the proposed control method, Indirect adaptive control method is applied to the representative continuous-time chaotic nonlinear systems, that is, the Duffing system and the Lorenz system. Simulations are done to verify the effectivencess of controller.

  • PDF

Adaptive FNN Controller for Maximum Torque of IPMSM Drive (IPMSM 드라이브의 최대토크를 위한 적응 FNN 제어기)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Byung-Jin;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.313-318
    • /
    • 2007
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive fuzzy neural network controller and artificial neural network(ANN). This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using Adaptive-FNN controller and ANN controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper reposes speed control of IPMSM using Adaptive-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is a lied to IPMSM drive system controlled Adaptive-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the Adaptive-FNN and ANN controller.

  • PDF