• Title/Summary/Keyword: adaptive neural control

Search Result 587, Processing Time 0.038 seconds

A Study on Congestion control using Adaptive neural network algorithm (적응 신경망을 알고리즘을 이용한 혼잡제어에 관한 연구)

  • Cho, Hyun-Seob;Oh, Hun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1713-1715
    • /
    • 2007
  • Measurement of network traffic have shown that the self-similarity is a ubiquitous phenomenon spanning across diverse network environments. In previous work, we have explored the feasibility of exploiting the long-range correlation structure in a self-similar traffic for the congestion control. We have advanced the framework of the multiple time scale congestion control and showed its effectiveness at enhancing performance for the rate-based feedback control. Our contribution is threefold. First, we define a modular extension of the TCP-a function called with a simple interface-that applies to various flavours of the TCP-e.g., Tahoe, Reno, Vegas and show that it significantly improves performance. Second, we show that a multiple time scale TCP endows the underlying feedback control with proactivity by bridging the uncertainty gap associated with reactive controls which is exacerbated by the high delay-bandwidth product in broadband wide area networks. Third, we investigate the influence of the three traffic control dimensions-tracking ability, connection duration, and fairness-on performance.

  • PDF

Reinforcement learning-based control with application to the once-through steam generator system

  • Cheng Li;Ren Yu;Wenmin Yu;Tianshu Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3515-3524
    • /
    • 2023
  • A reinforcement learning framework is proposed for the control problem of outlet steam pressure of the once-through steam generator(OTSG) in this paper. The double-layer controller using Proximal Policy Optimization(PPO) algorithm is applied in the control structure of the OTSG. The PPO algorithm can train the neural networks continuously according to the process of interaction with the environment and then the trained controller can realize better control for the OTSG. Meanwhile, reinforcement learning has the characteristic of difficult application in real-world objects, this paper proposes an innovative pretraining method to solve this problem. The difficulty in the application of reinforcement learning lies in training. The optimal strategy of each step is summed up through trial and error, and the training cost is very high. In this paper, the LSTM model is adopted as the training environment for pretraining, which saves training time and improves efficiency. The experimental results show that this method can realize the self-adjustment of control parameters under various working conditions, and the control effect has the advantages of small overshoot, fast stabilization speed, and strong adaptive ability.

Development of surface defect inspection algorithms for cold mill strip (냉연 표면흠 검사 알고리듬 개발에 관한 연구)

  • Kim, Kyoung-Min;Park, Gwi-Tae;Park, Joong-Jo;Lee, Jong-Hak;Jung, Jin-Yang;Lee, Joo-Kang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.179-186
    • /
    • 1997
  • In this paper we suggest a development of surface defect inspection algorithms for cold mill strip. The defects which exist in a surface of cold mill strip have a scattering or singular distribution. This paper consists of preprocessing, feature extraction and defect classification. By preprocessing, the binarized defect image is achieved. In this procedure, Top-hit transform, adaptive thresholding, thinning and noise rejection are used. Especially, Top-hit transform using local min/max operation diminishes the effect of bad lighting. In feature extraction, geometric, moment and co-occurrence matrix features are calculated. For the defect classification, multilayer neural network is used. The proposed algorithm showed 15% error rate.

  • PDF

Auto-tuning of PID controller using Neural Networks and Model Reference Adaptive control (신경망을 이용한 PID 제어기의 자동동조 및 기준모델 적응제어)

  • Kim, S.T.;Kim, J.S.;Seo, Y.O.;Park, S.J.;Hong, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2299-2301
    • /
    • 2000
  • In this paper, the design of PID controller using Neural networks for the control of non-linear system is presented. First, non-linear system is identified using BPN(Backpropagation Network) algorithm. This identified model is connected to the PID controller and the parameters of PID controller are updated to the direction of reducing the difference between the identified model output and model reference output in arbitrary input signal. Therefore, identified model output tracks the model reference output in an acceptable error range and the parameters of controller are updated adaptively. The output of the system has a good performance in case of both noisy and noiseless model reference and we can control the system stable in off-line when the dynamics of the system is changed.

  • PDF

Dynamic Neurocontrol Architecture of Robot Manipulators (로보트 매니퓰레이터의 동력학적 신경제어 구조)

  • 문영주;오세영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.8
    • /
    • pp.15-23
    • /
    • 1992
  • Neural network control has many innovative potentials for fast, accurate and intelligent adaptive control. In this paper, two kinds of neurocontrol architectures for the dynamic control of robot manipulators are developed. One is based on a System Identification and Control scheme and the other is based on the Feedback-Error leaming scheme. Both of the proposed architectures use an inverse dynamic neurocontroller in parallel with a linear neurocontroller. The difference is that the first architecture uses the system identifier to get the signals used for training neurocontrollers, while the second architecture uses a properly defined energy function. Compared with the previous types of neurocontrollers which are using an inverse dynamic neurocontroller and a fixed PD gain controller, the proposed architectures not only eliminate the painful process of the fixed gain tuning but also exhibit superior peformances because the linear neurocontroller can adapt its gains according to the applied task. This superior performance is tested and verified through computer simulation of the dynamic control of the PUMA 560 arm.

  • PDF

Linkage control system design combined MCU (MCU 통합 연동 제어시스템 설계)

  • Ha, T.J.;Park, J.M.;Cho, K.O.
    • Smart Media Journal
    • /
    • v.1 no.1
    • /
    • pp.58-63
    • /
    • 2012
  • It is a superordinate concept to a network control system which optimally distributes the battery power to overall length parts through the linkage control drive and absorbs/integrates network diagnostics and overlapped functions with overall length control systems. This study is to develop a system that maximize the battery power and motor effectiveness by controlling motor battery controlling module with common MCU Integration linkage controlling system, and to develop S/W and H/W that can be controlled by linked with each controlling module in CAN method through using Autosar's standardized software.

  • PDF

A Study on the Control of Nonlinear Dynamical System Using the Fuzzy Model Based Controller (퍼지 모델 기반 제어기를 이용한 비선형 동적 시스템의 제어에 관한 연구)

  • Chang, Wook;Kwon, Oh-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.181-184
    • /
    • 1997
  • This paper propose the systematic procedure of the fuzzy model based controller for the continuous nonlinear system. Fuzzy controller have been successfully applied to many uncertain and complex industrial plants. The design of the fuzzy controller mainly depends on the knowledge from the expert who are familiar with the plant by trial and error. Therefore we need more systematic approach to the design of the fuzzy controller. In this paper, we design fuzzy model based controller applied to the nonlinear system. Unlike the design procedures reported in[8] and[9], we use the nonlinear process directly in designing the controller. This controller has been successfully applied to an inverted pendulum.

  • PDF

Adaptive Neuro-Fuzzy Inference Systems for Indoor Propagation Prediction

  • Phaiboon, S.;Phokharatkul, P.;Somkurnpanich, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1865-1869
    • /
    • 2004
  • A new model for the propagation prediction for mobile communication network inside building is presented in this paper. The model is based on the determination of the dominant paths between the transmitter and the receiver. The field strength is predicted with adaptive neuro - fuzzy inference systems (ANFIS), trained with measurements. The advantage of the ANFIS with hybrid least squares and gradient descent algorithms is fast convergence compared with original neural network. The K-means algorithm for selection of training patterns is also used. Comparison of our predicted results to measurements indicate that improvements in accuracy over conventional empirical model are achieved.

  • PDF

A Study on Distance Relay of Transmission UPFC Using Artificial Neural Network (신경회로망을 이용한 UPFC가 연계된 송전선로의 거리계전기에 관한 연구)

  • Lee, Jun-Kyong;Park, Jeong-Ho;Lee, Seung-Hyuk;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.37-44
    • /
    • 2004
  • This paper represents a new approach for the protective relay of power transmission lines using a Artificial Neural Network(ANN). A different fault m transmission lines need to be detected classified and located accurately and cleared as fast as possible. However, The protection range of the distance relay is always designed on the basis of fixed settings, and unfortunately these approach do not have the ability to adapt dynamically to the system operating condition. ANN is suitable for the adaptive relaying and the detection of complex faults. The backpropagation algerian based multi-layer protection is utilized for the teaming process. It allows to make control to various protection functions. As expected, the simulation result demonstrate that this approach is useful and satisfactory.

A Study on Distance Relay of Transmission with UPFC Using Artificial Neural Network (신경회로망을 이용한 UPFC가 연계된 송전선로의 거리계전기에 관한 연구)

  • Park, Jeong-Ho;Jung, Chang-Ho;Shin, Dong-Joon;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.196-198
    • /
    • 2002
  • This paper represents a new approach for the protective relay of power transmission lines using a Artificial Neural Network(ANN). A different fault on transmission lines need to be detected, classified and located accurately and cleared as fast as possible. However, The protection range of the distance relay is always designed on the basis of fixed settings, and unfortunately these approach do not have the ability to adapt dynamically to the system operating condition. ANN is suitable for the adaptive relaying and the detection of complex faults. The backpropagation algorithm based multi-layer perceptron is utilized for the learning process. It allows to make control to various protection functions. As expected, the simulation result demonstrate that this approach is useful and satisfactory.

  • PDF