• Title/Summary/Keyword: adaptive identification

Search Result 416, Processing Time 0.022 seconds

Stabilization Control of Ball and Beam System Using Adaptive Fuzzy Inference Technique (적응 펴지 추론기법을 이용한 Ball and Beam 시스템의 안정화 제어)

  • Kim, T.W.;Kim, H.B.;Shim, Y.J.;Shon, Y.D.;Lee, J.T.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.720-723
    • /
    • 1997
  • The characteristics of ball and beam system using fuzzy inference technique can be described by fuzzy modeling. Therefore, this paper introduces a technique for fuzzy structure identification of nonlinear Input-output relation- ship using an adaptive fuzzy inference system. And the simulation result using adaptive fuzzy inference technique shows its effectiveness for fuzzy structure identification of nonlinear system.

  • PDF

Control Method of on Unknown Nonlinear System Using Dynamical Neural Network (동적 신경회로망을 이용한 미지의 비선형 시스템 제어 방식)

  • 정경권;김영렬;정성부;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.494-497
    • /
    • 2002
  • In this paper, we proposed a control method of an unknown nonlinear system using a dynamical neural network. The proposed method performs for a nonlinear system with unknown system, identification with using the dynamical neural network, and then a nonlinear adaptive controller is designed with these identified informations. In order to verify the effectiveness of the proposed method, we simulated one-link manipulator. The simulation results showed the effectiveness of using the dynamical neural network in the adaptive control of one-link manipulator.

  • PDF

Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANNs) for structural damage identification

  • Hakim, S.J.S.;Razak, H. Abdul
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.779-802
    • /
    • 2013
  • In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANNs) techniques are developed and applied to identify damage in a model steel girder bridge using dynamic parameters. The required data in the form of natural frequencies are obtained from experimental modal analysis. A comparative study is made using the ANNs and ANFIS techniques and results showed that both ANFIS and ANN present good predictions. However the proposed ANFIS architecture using hybrid learning algorithm was found to perform better than the multilayer feedforward ANN which learns using the backpropagation algorithm. This paper also highlights the concept of ANNs and ANFIS followed by the detail presentation of the experimental modal analysis for natural frequencies extraction.

Adaptive PID controller based on error self-recurrent neural networks (오차 자기순환 신경회로망에 기초한 적응 PID제어기)

  • Lee, Chang-Goo;Shin, Dong-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.209-214
    • /
    • 1998
  • In this paper, we are dealing with the problem of controlling unknown nonlinear dynamical system by using neural networks. A novel error self-recurrent(ESR) neural model is presented to perform black-box identification. Through the various outcome of the experiment, a new neural network is seen to be considerably faster than the BP algorithm and has advantages of being less affected by poor initial weights and learning rate. These characteristics make it flexible to design the controller in real-time based on neural networks model. In addition, we design an adaptive PID controller that Keyser suggested by using ESR neural networks, and present a method on the implementation of adaptive controller based on neural network for practical applications. We obtained good results in the case of robot manipulator experiment.

  • PDF

Adaptive Digital Predictive Peak Current Control Algorithm for Buck Converters

  • Zhang, Yu;Zhang, Yiming;Wang, Xuhong;Zhu, Wenhao
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.613-624
    • /
    • 2019
  • Digital current control techniques are an attractive option for DC-DC converters. In this paper, a digital predictive peak current control algorithm is presented for buck converters that allows the inductor current to track the reference current in two switching cycles. This control algorithm predicts the inductor current in a future period by sampling the input voltage, output voltage and inductor current of the current period, which overcomes the problem of hardware periodic delay. Under the premise of ensuring the stability of the system, the response speed is greatly improved. A real-time parameter identification method is also proposed to obtain the precision coefficient of the control algorithm when the inductance is changed. The combination of the two algorithms achieves adaptive tracking of the peak inductor current. The performance of the proposed algorithms is verified using simulations and experimental results. In addition, its performance is compared with that of a conventional proportional-integral (PI) algorithm.

Predictive Control Algorithms for Adaptive Optical Wavefront Correction in Free-space Optical Communication

  • Ke, Xizheng;Yang, Shangjun;Wu, Yifan
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.641-651
    • /
    • 2021
  • To handle the servo delay in a real-time adaptive optics system, a linear subspace system identification algorithm was employed to model the system, and the accuracy of the system identification was verified by numerical calculation. Experimental verification was conducted in a real test bed system. Through analysis and comparison of the experimental results, the convergence can be achieved only 200 times with prediction and 300 times without prediction. After the wavefront peak-to-valley value converges, its mean values are 0.27, 4.27, and 10.14 ㎛ when the communication distances are 1.2, 4.5, and 10.2 km, respectively. The prediction algorithm can effectively improve the convergence speed of the peak-to-valley value and improve the free-space optical communication performance.

Substructural parameters and dynamic loading identification with limited observations

  • Xu, Bin;He, Jia
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.169-189
    • /
    • 2015
  • Convergence difficulty and available complete measurement information have been considered as two primary challenges for the identification of large-scale engineering structures. In this paper, a time domain substructural identification approach by combining a weighted adaptive iteration (WAI) algorithm and an extended Kalman filter method with a weighted global iteration (EFK-WGI) algorithm was proposed for simultaneous identification of physical parameters of concerned substructures and unknown external excitations applied on it with limited response measurements. In the proposed approach, according to the location of the unknown dynamic loadings and the partially available structural response measurements, part of structural parameters of the concerned substructure and the unknown loadings were first identified with the WAI approach. The remaining physical parameters of the concerned substructure were then determined by EFK-WGI basing on the previously identified loadings and substructural parameters. The efficiency and accuracy of the proposed approach was demonstrated via a 20-story shear building structure and 23 degrees of freedom (DOFs) planar truss model with unknown external excitation and limited observations. Results show that the proposed approach is capable of satisfactorily identifying both the substructural parameters and unknown loading within limited iterations when both the excitation and dynamic response are partially unknown.

A novel adaptive unscented Kalman Filter with forgetting factor for the identification of the time-variant structural parameters

  • Yanzhe Zhang ;Yong Ding ;Jianqing Bu;Lina Guo
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.9-21
    • /
    • 2023
  • The parameters of civil engineering structures have time-variant characteristics during their service. When extremely large external excitations, such as earthquake excitation to buildings or overweight vehicles to bridges, apply to structures, sudden or gradual damage may be caused. It is crucially necessary to detect the occurrence time and severity of the damage. The unscented Kalman filter (UKF), as one efficient estimator, is usually used to conduct the recursive identification of parameters. However, the conventional UKF algorithm has a weak tracking ability for time-variant structural parameters. To improve the identification ability of time-variant parameters, an adaptive UKF with forgetting factor (AUKF-FF) algorithm, in which the state covariance, innovation covariance and cross covariance are updated simultaneously with the help of the forgetting factor, is proposed. To verify the effectiveness of the method, this paper conducted two case studies as follows: the identification of time-variant parameters of a simply supported bridge when the vehicle passing, and the model updating of a six-story concrete frame structure with field test during the Yangbi earthquake excitation in Yunnan Province, China. The comparison results of the numerical studies show that the proposed method is superior to the conventional UKF algorithm for the time-variant parameter identification in convergence speed, accuracy and adaptability to the sampling frequency. The field test studies demonstrate that the proposed method can provide suggestions for solving practical problems.

An Adaptive Iterative Learning Control and Identification for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 적응 반복 학습 제어 및 식별)

  • 최준영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.395-401
    • /
    • 2004
  • We present an AILC(Adaptive Iterative Learning Control) scheme and a sufficient condition for system parameter identification for uncertain robotic systems that perform the same tasks repetitively. It is guaranteed that the joint velocity and position asymptotically converge to the reference joint velocity and position, respectively. In addition, it is proved that a sufficient condition for parameter identification is the PE(Persistent Excitation) condition on the regressor matrix evaluated at the reference trajectory during the operation period. Since the regressor matrix on the reference trajectory can be easily computed prior to the real robot operation, the proposed algorithm provides a useful method to verify whether the parameter error converges to zero or not.

A Novel Method for the Identification of the Rotor Resistance and Mutual Inductance of Induction Motors Based on MRAC and RLS Estimation

  • Jo, Gwon-Jae;Choi, Jong-Woo
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.492-501
    • /
    • 2018
  • In the rotor-flux oriented control used in induction motors, the electrical parameters of the motors should be identified. Among these parameters, the mutual inductance and rotor resistance should be accurately tuned for better operations. However, they are more difficult to identify than the stator resistance and stator transient inductance. The rotor resistance and mutual inductance can change in operations due to flux saturation and heat generation. When detuning of these parameters occurs, the performance of the control is degenerated. In this paper, a novel method for the concurrent identification of the two parameters is proposed based on recursive least square estimation and model reference adaptive control.