DOI QR코드

DOI QR Code

Predictive Control Algorithms for Adaptive Optical Wavefront Correction in Free-space Optical Communication

  • Ke, Xizheng (School of Automation and Information Engineering, Xi'an University of Technology) ;
  • Yang, Shangjun (School of Automation and Information Engineering, Xi'an University of Technology) ;
  • Wu, Yifan (School of Automation and Information Engineering, Xi'an University of Technology)
  • Received : 2021.08.27
  • Accepted : 2021.11.09
  • Published : 2021.12.25

Abstract

To handle the servo delay in a real-time adaptive optics system, a linear subspace system identification algorithm was employed to model the system, and the accuracy of the system identification was verified by numerical calculation. Experimental verification was conducted in a real test bed system. Through analysis and comparison of the experimental results, the convergence can be achieved only 200 times with prediction and 300 times without prediction. After the wavefront peak-to-valley value converges, its mean values are 0.27, 4.27, and 10.14 ㎛ when the communication distances are 1.2, 4.5, and 10.2 km, respectively. The prediction algorithm can effectively improve the convergence speed of the peak-to-valley value and improve the free-space optical communication performance.

Keywords

Acknowledgement

This work was funded by the Key Industry Innovation Chain Project of Shaanxi Province (Grant No. 2017ZDCXL-GY-06-01), the Scientific Research Program of the Education Department of Shaanxi Province (Grant No. 18JK0341), and Xi'an Science and Technology Innovation Guidance Project [Grant No. 201805030YD8CG14 (12)].

References

  1. T. Weyrauch and M. A. Vorontsov, "Atmospheric compensation with a speckle beacon in strong scintillation conditions: directed energy and laser communication applications," Appl. Opt. 44, 6388-6401 (2005). https://doi.org/10.1364/AO.44.006388
  2. Y. Ata and O. Korotkova, "Adaptive optics correction in natural turbulent waters," J. Opt. Soc. Am. A 38, 587-594 (2021). https://doi.org/10.1364/JOSAA.419134
  3. J. C. Juarez, D. W. Young, J. E. Sluz, J. L. Riggins II, and D. H. Hughes, "Free-space optical channel propagation tests over a 147-km link," Proc. SPIE 8038, 80380B (2011). https://doi.org/10.1117/12.886890
  4. M. W. Wright, J. F. Morris, J. M. Kovalik, K. S. Andrews, M. J. Abrahamson, and A. Biswas, "Adaptive optics correction into single mode fiber for a low earth orbiting space to ground optical communication link using the OPALS downlink," Opt. Express 23, 33705-33712 (2015). https://doi.org/10.1364/OE.23.033705
  5. X. Chu, C. Qiao, and X. Feng, "Propagation of Gaussian-Schell beam in turbulent atmosphere of three-layer altitude model," Appl. Opt. 50, 3871-3878 (2011). https://doi.org/10.1364/AO.50.003871
  6. Y. Baykal, M. Gokce, and Y. Ata, "Application of adaptive optics on bit error rate of M -ary pulse-position-modulated oceanic optical wireless communication systems," Laser Phys. 30, 076202 (2020). https://doi.org/10.1088/1555-6611/ab8bdc
  7. Z. K. Tan, X. Z. Ke, and J. Wang, "An experimental study of wavefront correction for a heterodyne detection system for optical communication," Indian J. Phys. 94, 1135-1145 (2020). https://doi.org/10.1007/s12648-019-01550-3
  8. M. B. Jorgenson and G. J. Aitken, "Prediction of atmospherically induced wave-front degradations," Opt. Lett. 17, 466-468 (1992). https://doi.org/10.1364/OL.17.000466
  9. C. Baranec, M. Lloyd-Hart, and N. M. Milton, "Ground-layer wave front reconstruction from multiple natural guide stars," Astrophys. J. 661, 1332-1338 (2007). https://doi.org/10.1086/517874
  10. G. J. Aitken, D. Rossille, and D. R. McGaughey, "Predictability of fractional-Brownian-motion wavefront distortion and some implications for closed-loop adaptive optics control," Proc. SPIE 3353, 1060-1069 (1998). https://doi.org/10.1117/12.321728
  11. B. L. Ellerbroek, "Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques," J. Opt. Soc. Am. A 19, 1803-1816 (2002). https://doi.org/10.1364/josaa.19.001803
  12. D. M. Wiberg, C. E. Max, and D. T. Gavel, "Geometric view of adaptive optics control," J. Opt. Soc. Am. A. 22, 870-880 (2005).
  13. L. Poyneer and J.-P. Veran, "Predictive wavefront control for adaptive optics with arbitrary control loop delays," J. Opt. Soc. Am. A. 25, 1486-1496 (2008). https://doi.org/10.1364/JOSAA.25.001486
  14. D. A. Montera, B. M. Welsh, M. C. Roggemann, and D. W. Ruck "Processing wave-front-sensor slope measurements using artificial neural networks," Appl. Opt. 35, 4238-4251 (1996). https://doi.org/10.1364/AO.35.004238
  15. W. J. Wild, "Predictive optimal estimators for adaptive-optics systems," Opt. Lett. 21, 1433-1435 (1996). https://doi.org/10.1364/OL.21.001433
  16. C. Dessenne, P.-Y. Madec, and G. Rousset, "Modal prediction for closed-loop adaptive optics," Opt. Lett. 22, 1535-1537 (1997). https://doi.org/10.1364/OL.22.001535
  17. C. Liu, L. Hu, Z. Cao, Q. Mu, and L. Xuan, "Zonal slope prediction for open-loop adaptive optics," Opt. Lett. 36, 4461-4463 (2011). https://doi.org/10.1364/OL.36.004461
  18. P. C. McGuire, T. A. Rhoadarmer, H. A. Coy, J. R. P. Angel, and M. Lloyd-Hart, "Linear zonal atmospheric prediction for adaptive optics," Proc. SPIE 4007, 682-691 (2000). https://doi.org/10.1117/12.390346
  19. R. N. Paschall and D. J. Anderson, "Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements," Appl. Opt. 32, 6347-6358 (1993). https://doi.org/10.1364/AO.32.006347
  20. D. P. Looze, M. Kasper, S. Hippler, O. Beker, and R. Weiss, "Optimal compensation and implementation for adaptive optics systems," Exp. Astron. 15, 67-88 (2003). https://doi.org/10.1023/B:EXPA.0000036150.62118.64
  21. C. Petit, J.-M. Conan, C. Kulcsar, H.-F. Raynaud, and T. Fusco, "First laboratory validation of vibration filtering with LQG control law for adaptive optics," Opt. Express 16, 87-97 (2008). https://doi.org/10.1364/OE.16.000087
  22. G. Sivo, C. Kulcsar, J.-M. Conan, H.-F. Raynaud, E. Gendron, A. Basden, F. Vidal, T. Morris, S. Meimon, C. Petit, D. Gratadour, O. Martin, Z. Hubert, A. Sevin, D. Perret, F. Chemla, G. Rousset, N. Dipper, G. Talbot, E. Younger, R. Myers, D. Henry, S. Todd, D. Atkinson, C. Dickson, and A. Longmore, "First on-sky SCAO validation of full LQG control with vibration mitigation on the CANARY pathfinder," Opt. Express 22, 23565-23591 (2014). https://doi.org/10.1364/OE.22.023565
  23. C. Kulcsar, H.-F. Raynauda, C. Petit, and J.-M. Conan, "Minimum variance prediction and control for adaptive optics," Automatica 48, 1939-1954 (2012). https://doi.org/10.1016/j.automatica.2012.03.030
  24. D. W. Miller and S. C. O. Grocott, "Robust control of the multiple mirror telescope adaptive secondary mirror," Opt. Eng. 38, 1276-1287 (1999). https://doi.org/10.1117/1.602186
  25. C. T. Chou and M. Verhaegen, "Subspace algorithms for the identification of multivariable dynamic errors-in-variables models," Automatica 33, 1857-1869 (1997). https://doi.org/10.1016/S0005-1098(97)00092-7
  26. I. Goethals, K. Pelckmans, J. A. Suykens, and B. D. Moor, "Subspace identification of Hammerstein systems using least squares support vector machines," IEEE Trans. Automat. Contr. 50, 1509-1519 (2005). https://doi.org/10.1109/TAC.2005.856647
  27. S. An, Y. Hua, J. H. Manton, and Z. Fang, "Group decorrelation enhanced subspace method for identifying FIR MIMO channels driven by unknown uncorrelated colored sources," IEEE Trans. Signal Process. 53, 4429-4441 (2005). https://doi.org/10.1109/TSP.2005.859339
  28. A. Chiuso, "Asymptotic variance of vlosed-loop subspace identification methods," IEEE Trans. Automat. Contr. 51, 1299-1314 (2006). https://doi.org/10.1109/TAC.2006.878703
  29. W. Favoreel, B. De Moor, and P. Van Overschee, "Subspace identification of bilinear systems subject to white inputs," IEEE Trans. Automat. Contr. 44, 1157-1165 (1999). https://doi.org/10.1109/9.769370