• Title/Summary/Keyword: adaptive control law

Search Result 315, Processing Time 0.024 seconds

Considerations in Practical Advanced Guidance Law Development (실용적 첨단유도법칙 개발을 위한 고려사항)

  • 조항주
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.96-106
    • /
    • 2002
  • Many modern guided weapon systems employ sophisticated target sensors as well as powerful computing systems. Due to such advanced features, they are required to achieve better guidance accuracy, and at the same time other guidance objectives for better weapon effectiveness and survivability. In this paper, we overview some of the technical considerations in such advanced guidance algorithm development, and briefly look at some related research works. More specifically, we discuss impact angle control, time-varying nature of the guidance system, time-to-go estimation, guidance loop stability, effect of autopilot lag and physical limitations in control variables, parasitic paths in guidance loops, etc. We also briefly look at some advanced concepts such as integrated guidance and control loop design, target adaptive guidance, guidance law development based on dual control concept, and terminal evasive maneuver.

Model Reference Adaptive Control of a Quadrotor Considering the Uncertainty of Payload (유상하중의 불확실성을 고려한 쿼드로터의 모델 참조 적응제어 기법 설계)

  • Lee, Dongwoo;Kim, Lamsu;Jang, Kwangwoo;Lee, Seongheon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.749-757
    • /
    • 2021
  • In transportation missions using quadrotor, the payload may change the model parameters, such as mass, moment of inertia, and center of gravity. Moreover, if position of the payload is constantly changing during flight, the effect can adversely affect the control performances. To handle this issue, we suggest Model Reference Adaptive Control based on Linear Quadratic Regulator(LQR+MRAC) to compensate the uncertainty caused by payload. Firstly, the mathematical modeling with the fixed payload is derived. Second, Linear Quadratic Regulator (LQR) is used to design the reference model and baseline controller. Also, through the Stability method, Adaptive law is derived to estimate the model parameters. To verify the performance of proposed control scheme, we compared LQR and LQR+MRAC in situations where uncertainties exist. And, when the disturbance exist, the classic MRAC and proposed controller is compared to analyze the transient response and robustness.

An Integration Type Adaptive Compensator for a Class of Linearly Parameterized Systems (선형 파라미터화된 시스템에 대한 적분형 적응보상기)

  • Yoo Byung-Kook;Yang Keun-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.2
    • /
    • pp.82-88
    • /
    • 2005
  • A compensation scheme for a class of linearly parameterized systems is presented. The compensator consists of a typical linearizing control and an adaptive observer with integration type update law, which is based on Speed Gradient (SG) algorithm.. Instead of the intermediate functions of the compensation schemes suggested by other researchers, the proposed compensator is designed with some design functions which guarantee the growth, convexity, attainability, and pseudo gradient conditions in the update law. The scheme achieves the asymptotic stability of the tracking error and the boundedness of the estimation errors. A numerical example is given to demonstrate the validity of the proposed design.

  • PDF

Design of Adaptive Controller for Factory Automation Facility with Unmodeled Dynamics (자동화설비의 모델 불확실성을 고려한 적응제어기 설계)

  • 이형찬
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.1
    • /
    • pp.119-127
    • /
    • 1999
  • In this paper, a robust direct adaptive contrdler is presented in a linear time-invariant. Continuous systems with unmodeded dynamics and bounded disturbance using a rmdified control law and the adaptive law to Compensate for the drawback of ${\sigma}$-modification algorithm. The proposed algorithm is awlied to a plant with unrmdeled dynamics represented as a singular perturbation. Boundness of all signals in overall system is guaranteed with mathematical analysis. simulation results are presented the effectiveness foc the first-order plant even in the presence of unmodelled dynamics or bounded disturbance simulatneousIy.eousIy.

  • PDF

Design of a Robust Adaptive Backstepping Controller for a Chaos System with Disturbances (외란을 포함한 카오스시스템의 강인 적응 백스테핑 제어기 설계)

  • Hyun, Keun-Ho;Ka, Chool-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.119-128
    • /
    • 2005
  • In this paper, an robust adaptive backstepping controller is proposed for the chaos system with disturbances. This controller will be applicable to the chaos system of strict-feedback form and utilize the saturation function for decreasing the effect of disturbances derived from unmodelled dynamics and external noise. It shows that backstepping algorithm can be used to solve the problems of nonlinear system very well and robust controller can be designed without the variation of adaptive law. Simulation results are provided to demonstrate the effectiveness of the proposed controller.

A Study on Burnthrough Point Control in Sintering Process (소결공정에서의 완전 소결점 위치 제어에 관한 연구)

  • Lee, Sang-Jeong;Kim, Jeom-Geun;Go, Myeong-Sam;Gwon, Uk-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 1985.07a
    • /
    • pp.55-60
    • /
    • 1985
  • A state-space model of a burn through point control system of an industrial sintering process is derived. The model is then used in designing a self-tuning controller which consists of the receding horizon control law and a least-squares prediction algorithm. By applying this adaptive controller to POSCO sintering process IV, satisfactory expermental results have been obtained. Some of these practical results are presented in this paper.

  • PDF

Nonlinear Control with Magnitude and Rate Constraints (크기 및 변화율 제한을 갖는 비선형 시스템의 제어)

  • Lee, Jung-Kook;Lee, Keum-Won;Lee, Jun-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.130-135
    • /
    • 2007
  • This paper deals with a controller design for a 2 dimensional aeroelatic model which has unknown parameters including polynomial type nonlinearity. Actually in case of state and acuator signal having magnitude, rate and bandwidth limitations, the controller can't be implemented and so in each case, a filter is used for implementation. First, error signals are defined upon the backstepping theory, and tracking error signals are also defined due to command signal and filter signals and then compensated tracking error signals are defined. Lastly, a Lyapunov function is defined for the stabilization and from this method, an adaptive law is derived. Simulations are done for the demonstrtion of the effectiveness of the algorithms.

  • PDF

Model Reference Adaptive Control for Multivariable Systems (다변수 시스템에 대한 기준 모델형 적응 제어)

  • Hai-Won Yang
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.11
    • /
    • pp.394-403
    • /
    • 1983
  • This paper discusses a model reference adaptive control for a multi-input multi-output continuos system in matrix fraction description. The controller is of Monopoli-Narendra type with a time-varying gain matrix in the parameter adaptation law. The transfer matrix of the given plant with an adjustable controller is made to approach to that of the reference model asymptotically. It is shown that, under some plausible assumptions such as on the knowlidge of an interactor matrix, the algorithm for a single-input single-output system can be appropriately extended to a multi-input multi-output system. The convergence of an adaptation law is estavlished with some stability theory and stability of the overall system is asserted by an analytical investigation.

  • PDF

A study on the Adaptive Variable Structure Controller with Nonlinear Switching Surfaces (비선형 스위칭 평면을 가지는 적응가변구조 제어기 설계)

  • Park, Soo-Sik;Lee, Dae-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.52-54
    • /
    • 1996
  • A number of algorithm using the VSS(Variable Structure System) for uncertain dynamic system are developed. But, in these algorithms, the assumption that the uncertainties are bounded and their bounds are available to the designer is involved. And bounds on the uncertainties are an important clue to guarantee the stability of the closed loop system. However, sometimes bounds on the uncertainties may not be easily obtained because of the complexity of the structure of the uncertainties. Therefore, a methodology by which the boundary values on the uncertainties can be easily obtained is required. The VSS proposed in this proposal employ the new adaptive VSS scheme for uncertain dynamic system being estimated on line. The resulting control law is simple and easy to apply to on line computer control. It can also suppress chattering and maintain good tracking precision even if unmodeled dynamics are considered. And, a new method using nonlinear switching surface is introduced so that the speed response is improved and the good transient response can be obtained. Simulation results are presented and show the advantage of the proposed adaptive VSS with nonlinear switching surfaces.

  • PDF

Speed Sensorless Control of an Induction Motor using Fuzzy Speed Estimator (퍼지 속도 추정기를 이용한 유도전동기 속도 센서리스 제어)

  • Choi, Sung-Dae;Kim, Lark-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.183-187
    • /
    • 2007
  • This paper proposes Fuzzy Speed Estimator using Fuzzy Logic Controller(FLC) as a adaptive law in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. Fuzzy Speed Estimator estimates the speed of an induction motor with a rotor flux of the reference model and the adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error of the rotor flux as the input of FLC. The experiment is executed to verify the propriety and the effectiveness of the proposed speed estimator.