DOI QR코드

DOI QR Code

Model Reference Adaptive Control of a Quadrotor Considering the Uncertainty of Payload

유상하중의 불확실성을 고려한 쿼드로터의 모델 참조 적응제어 기법 설계

  • Lee, Dongwoo (Korea Advanced Institute of Science and Technology) ;
  • Kim, Lamsu (Korea Advanced Institute of Science and Technology) ;
  • Jang, Kwangwoo (Korea Advanced Institute of Science and Technology) ;
  • Lee, Seongheon (Korea Advanced Institute of Science and Technology) ;
  • Bang, Hyochoong (Korea Advanced Institute of Science and Technology)
  • Received : 2021.03.31
  • Accepted : 2021.08.05
  • Published : 2021.09.01

Abstract

In transportation missions using quadrotor, the payload may change the model parameters, such as mass, moment of inertia, and center of gravity. Moreover, if position of the payload is constantly changing during flight, the effect can adversely affect the control performances. To handle this issue, we suggest Model Reference Adaptive Control based on Linear Quadratic Regulator(LQR+MRAC) to compensate the uncertainty caused by payload. Firstly, the mathematical modeling with the fixed payload is derived. Second, Linear Quadratic Regulator (LQR) is used to design the reference model and baseline controller. Also, through the Stability method, Adaptive law is derived to estimate the model parameters. To verify the performance of proposed control scheme, we compared LQR and LQR+MRAC in situations where uncertainties exist. And, when the disturbance exist, the classic MRAC and proposed controller is compared to analyze the transient response and robustness.

쿼드로터를 활용한 운송 임무에서 임의의 유상하중을 장착하게 되면 질량, 관성모멘트, 무게중심의 위치와 같은 모델 파라미터가 변화하게 된다. 더욱이 유상하중이 기체에 장착되는 위치가 기체의 무게중심과 일치하지 않는 경우 무게중심의 변화는 야기되며 이는 제어 성능에 악영향을 미치게 된다. 이에 본 논문에서는 유상하중에 따른 모델의 불확실성을 보상하기 위하여, 선형 제차 조정기(Linear Quadratic Regulator, LQR) 기반의 모델 참조 적응 제어기법(Model Reference Adaptive Control, MRAC)을 제안한다. 먼저 고정된 유상하중을 고려한 쿼드로터의 동역학 모델을 유도하고, 선형 제차 조정기를 이용하여 기준제어기를 선정한다. 참조 모델은 과도응답을 향상하기 위해 폐루프 참조 모델을 사용하였으며, 선형 제차 조정기를 통하여 선정하였다. 또한, 안정성 분석을 통하여 모델 파라미터를 추정하기 위한 적응 제어기법을 설계하였다. 제안하는 제어기의 성능을 확인하기 위하여 모델 파라미터의 불확실성이 존재하는 상황에서 선형 재차 조정기와 성능을 비교하였다. 그리고 외란이 있는 상황에서 기존의 모델 참조 적응 제어기법과도 제안한 제어기의 결과를 비교하여 과도응답과 강건성에 대해서도 분석하였다.

Keywords

References

  1. Pounds, P. E. I., Bersak, D. R. and Dollar, A. M., "Stability of small-scale UAV helicopters and quadrotors with added payload mass under PID control," Autonomous Robot, Vol. 33, February 2012, pp. 129~142. https://doi.org/10.1007/s10514-012-9280-5
  2. Hassanalian, M. and Abdelkefi, A., "Classifications, applications, and design challenges of drones: A review," Progress in Aerospace Sciences, Vol. 91, May 2017, pp. 99~131. https://doi.org/10.1016/j.paerosci.2017.04.003
  3. Salih, A. L., Moghavvemi, M., Mohamed, H. A. F. and Gaeid, K. S., "Modelling and PID controller design for a quadrotor unmanned air vehicle," 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), May 2010, pp. 1~5.
  4. Reyes-Valeria, E., Enriquez-Caldera, R., Camacho-Lara, S. and Guichard, J., "LQR control for a quadrotor using unit quaternions: Modeling and simulation," CONIELECOMP 2013, 23rd International Conference on Electronics, Communications and Computing, June 2013, pp. 172~178.
  5. Voos, H., "Nonlinear control of a quadrotor micro-UAV using feedback-linearization," 2009 IEEE International Conference on Mechatronics, May 2009, pp. 1~6.
  6. Xu, R. and Ozguner, U., "Sliding Mode Control of a Quadrotor Helicopter," Proceedings of the 45th IEEE Conference on Decision and Control, May 2006, pp. 4957~4962.
  7. Dydek, Z. T., Annaswamy, A. M. and Lavretsky, E., "Adaptive Control of Quadrotor UAVs: A Design Trade Study With Flight Evaluations," IEEE Transactions on Control Systems Technology, Vol. 21, No. 4, July 2013, pp. 1400~1406. https://doi.org/10.1109/TCST.2012.2200104
  8. Palunko, I. and Fierro, R., "Adaptive Control of a Quadrotor with Dynamic Changes in the Center of Gravity," Proceedings of the 18th World Congress the International Federation of Automatic Control, Vol. 44, January 2011, pp. 2626~2631.
  9. Ko, D. H., Kang, J. S. and Choi, K. Y., "Design and Performance Verification of L1 Adaptive Flight Control Law Considering the Change of Center of Gravity for Unmanned Tailless Aircraft," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 47, No. 2, 2019, pp. 114~121. https://doi.org/10.5139/JKSAS.2019.47.2.114
  10. Maki, T., Zhao, M., Shi, F., Okada, K. and Inaba, M., "Model Reference Adaptive Control of Multirotor for Missions with Dynamic Change of Payloads During Flight," 2020 IEEE International Conference on Robotics and Automation, May 2020, pp. 7433~7439.
  11. Whitehead, B. T. and Bieniawski, S. R., "Model Reference Adaptive Control of a Quadrotor UAV," AIAA Guidance, Navigation, and Control Conference, August 2010, AIAA 2010-8148.
  12. Achtelik, M., Bierling, T., Wang, J., Hocht, L. and Holzapfel, F., "Adaptive Control of a Quadcopter in the Presence of large/complete Parameter Uncertainties," Infotech@Aerospace, March 2011, AIAA 2011-1485.
  13. Sagatun, S. I. and Fossen, T. I., "Lagrangian formulation of underwater vehicles dynamics," Conference Proceedings 1991 IEEE International Conference on Systems, Vol. 2, August 1991, pp. 1029~1034.
  14. Ioannou, P. and Fidan, B., Adaptive Control Tutorial, SIAM, Philadelphia, 2013.
  15. Jurado, F., Lopez, S., Dzul, A. and Rodriguez-Cortes, H., "Decentralized direct MRAC for attitude control of a quadrotor UAV," 2017 14th International Conference on Electrical Engineering Computing Science and Automatic Control, Oct, 2017, pp. 1~6.
  16. Lavretsky, E. and Wise, K. A., Robust and Adaptive Control With Aerospace Applications, Springer, NewYork, 2013.
  17. Lavretsky, E., "Adaptive Output Feedback Design Using Asymptotic Properties of LQG/LTR Controllers," IEEE Transactions on Automatic Control, Vol. 57, No. 6, June 2012, pp. 1587~1591. https://doi.org/10.1109/TAC.2011.2174692