• Title/Summary/Keyword: adaptive beam steering

Search Result 18, Processing Time 0.028 seconds

A New Multi-Beam MVDR Technique for Removing Interference Signals in Array Antenna Based GPS Receivers (GPS 수신기에서 간섭신호 제거를 위한 배열 안테나 기반 다중 빔 MVDR 기법)

  • Jeong, Eui-Rim;Won, Hyun-Hee;Yang, Gi-Jung;Ahn, Byoung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.491-498
    • /
    • 2017
  • GPS (global positioning system) is a popular system that provides location information by measuring arrival time difference at the receiver between several GPS satellite signals. GPS is widely used in commercial area as well as military systems. Reliable GPS signal reception is more important in the military applications such as guided missiles. However, since the carrier frequencies of the GPS signals are well known and the received power is extremely low, the GPS systems are vulnerable to intentional jamming attacks. To remove jammers while maintaining GPS signals at the received signals, a popular technique is an adaptive beam steering method based on array antenna. Among adaptive beam steering techniques, this paper considers MVDR (minimum variance distortionless response) algorithm, and proposes a new adaptive technique that preserves the received signals at desired directions, but removes the unknown jamming signals adaptively. The performance of the proposed method is verified through computer simulation.

Enhanced Adaptive Beamforming and Null Steering Algorithms in Cognitive Radio System

  • Zhuang, Zhili;Sohn, Sung-Hwan;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11A
    • /
    • pp.822-830
    • /
    • 2009
  • The spectrum efficiency of mobile communication networks can be improved dramatically adopting multiple antennas technologies. In order to guarantee the licensed rights of primary user (PU), the cognitive radio system should perform in a relatively low interference manner when it gets access to the spectrum of licensed networks. In this paper, we explore a uniformly distributed circular antenna array to implement beamforming algorithm that is accomplished by optimization method at the base station of cognitive radio networks, and therefore we can suppress the interference to PU by steering quite low transmission power toward PU and constructing a narrow beam toward cognitive user (CU). By reducing the constraint number of the optimization problem, we also propose a null steering algorithm that steers rather low radiation power toward PU, while the other areas in the same cell are covered by radiation power except the local area around PU. It is pursued to reduce the computation load and enlarge the capacity of cognitive radio networks extremely. The simulation results demonstrate that the proposed algorithms process superior performance.

An Active Interference Cancellation Technique for Removing Jamming Signals in Array Antenna GPS Receivers (GPS 수신기에서 간섭신호에 대응하기 위한 배열 안테나기반 능동 간섭 제거 방안)

  • Jeong, Eui-Rim;Won, Hyun-Hee;Cho, Sung-Woo;Ahn, Byoung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1539-1545
    • /
    • 2015
  • GPS (global positioning system) is a popular system that provides location information by measuring arrival time difference at the receiver between several GPS satellite signals. GPS is widely used in commercial area as well as military systems. Reliable GPS signal reception is more important in the military systems. However, since the carrier frequencies of the GPS signals are well known, the GPS receivers are vulnerable to intentional jamming attacks. To remove jammers but maintain GPS signals at the received signals, a popular technique is an adaptive beam steering method based on array antenna. Among adaptive beam steering techniques, this paper considers MVDR (minimum variance distortionless response) algorithm, and proposes a new adaptive technique that preserves the received signals at desired direction, but removes the jamming signals adaptively. The performance of the proposed method is verified through computer simulation.

A Study on Optimization of Single-Channel Monopulse Tracking System using Phased Array Antenna (위상배열안테나를 이용한 단일 채널 모노펄스 추적 시스템의 최적화에 관한 연구)

  • Jung, Jin-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.705-712
    • /
    • 2018
  • The radiation characteristics of a phased array antenna is changed according to the beam steering angle. The monopulse tracking system calculates the prediction angle using the radiation characteristics of antenna. Therefore, the monopulse ratio curve is changed according to the beam steering angle for the monopulse tracking system using a phase array antenna, and the tracking accuracy goes down. In the case of a single-channel monopulse system, the monopulse rate curve is controlled by the configuration variables of the system. In this paper, a simplified formula was presented for adaptive control of monopulse system configuration variables on beam steering angle. The presented formula can induce a uniform monopulse ratio curve for the beam steering angle as well as the phased array antenna design parameters.

Squint Free Phased Array Antenna System using Artificial Neural Networks

  • Kim, Young-Ki;Jeon, Do-Hong;Thursby, Michael
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.3
    • /
    • pp.47-56
    • /
    • 2003
  • We describe a new method for removing non-linear phased array antenna aberration called "squint" problem. To develop a compensation scheme. theoretical antenna and artificial neural networks were used. The purpose of using the artificial neural networks is to develop an antenna system model that represents the steering function of an actual array. The artificial neural networks are also used to implement an inverse model which when concatenated with the antenna or antenna model will correct the "squint" problem. Combining the actual steering function and the inverse model contained in the artificial neural network, alters the steering command to the antenna so that the antenna will point to the desired position instead of squinting. The use of an artificial neural network provides a method of producing a non-linear system that can correct antenna performance. This paper demonstrates the feasibility of generating an inverse steering algorithm with artificial neural networks.

  • PDF

A Direction-of-Arrival Estimation Based Adaptive Beamforming Algorithm for OFDMA Smart Antenna Systems (OFDMA 스마트 안테나 시스템을 위한 도래각 추정 기반의 적응 빔 형성 알고리즘)

  • Yun, Young-Ho;Park, Yoon-Ok;Park, Hyung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12A
    • /
    • pp.1214-1222
    • /
    • 2006
  • In this paper, an efficient direction-r)f-arrival based adaptive beamforming algorithm for orthogonal frequency-division multiple-access smart antenna systems is proposed. The proposed algorithm provides a high performance by steering main beams to the directions of a desired signal, whereas steering nulls to the directions of the interference, using the estimated directions. The beamforming outputs obtained by steering the main beams to the distinct directions of resolvable multipath signals are combined in a maximal ratio manner to exploit angular diversity gain. The performance elf the proposed algorithm is finally evaluated in cellular mobile environments to verify its efficiency and is compared with that of least-squares beamforming algorithm, by taking the WiBro system as a target system.

Left/Right Bearing Discrimination with Adaptive Cardioid Beamforming (적응 카디오이드 빔 형성을 이용한 좌/우 방위 분리 기법)

  • 손윤준;천승용;김기만
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.489-495
    • /
    • 2003
  • Single towed line array receiver contains an ambiguity on conjugate bearings because of lacking aperture in transverse direction. To solve the left/right bearing ambiguity of line array receiver this paper proposed using single line array with fixed cardioid beam. Fixed cardioid beam has problem about back beam gain exists for steering beam inherent. Back beam is makes form on direction that is different from actually source so that reduced the performance of left/right bearing discrimination. In this paper, line way with adaptive cardioid beam for resolve problem of back beam gain is proposed. So the proposed method has more improved left/right bearing discrimination than fixed cardioid beam, Simulation results show the performance of the proposed method.

Analysis of DOA Estimation and Adaptive Beam-forming of MIMO between Linear-circular Array Antennas (선형-원형배열 안테나에 따른 MIMO의 DOA 추정과 적응 빔성형 분석)

  • Yang, Doo-Yeong;Lee, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2777-2784
    • /
    • 2011
  • In this paper, DOA(direction of arrival) of multiple incident signals received from linear array antenna and circular array antenna, which is based on nonparametric estimation algorithm, and adaptive beam-forming algorithm are studied and analyzed. In nonparametric estimation algorithm, we minimize a regularized objective function for finding a estimate of the signal energy as a function of angle, using nonquadratic norm which leads to supper resolution and noise suppression. And then, DOA is estimated by the signal and noise spatial steering vector, and adaptive beam-forming pattern is improved by weight vectors obtained from the spatial vector. Especially, the discrimination ability of DOA and the adaptive beam-forming ability according to antenna array methods and the number of array elements are compared and considered.

Demonstration of Adaptive Analogue Beam Forming in the E-Band

  • Dyadyuk, Val;Stokes, Leigh;Nikolic, Nasiha;Weily, Andrew R.
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.138-145
    • /
    • 2010
  • In this paper, we report the test results of a small-scale prototype that implements an analogue-beam-formed phased antenna array in the E-band. A four-channel dual-conversion receive RF module for 71~76 GHz frequency band has been developed and integrated with a linear end-fire antenna array. Measured performance is very close to the simulated results. An ad-hoc wireless communication system has also been demonstrated. Low BER was measured for an 8PSK data stream at 1.5 Gbps with the receive array beam formed in the direction of arrival of the transmitted signal. To our knowledge this is the first steerable antenna array reported to date in the E-band.

The Technique of Satellite Tracking and Beam Forming for Mobile TT&C (이동형 위성 관제를 위한 위성 위치 파악 및 빔 성형 기법)

  • Lee, Yun-Soo;Chinn, Yong-Ohk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1359-1369
    • /
    • 2007
  • This paper describes the technique of satellite direction finding and main beam steering of the adaptive array antenna system which is used for mobile TT&C(Tracking Telemetry&Command) system. To be able to control the satellite on mobile vehicle while moving, the relative directional information of the satellite to the mobile vehicle is necessary to make main beam to the direction of satellite. To do this MUSIC, which is one of the super-resolution algorithm of wave direction finding, is used and then the performance analysis and quantization problem of phase shifter are addressed. This paper is valuable in the respect of showing feasibility of designing the moble TT&C using adative array antenna system.