• Title/Summary/Keyword: ada boost

Search Result 193, Processing Time 0.027 seconds

TrAdaBoost-based Flow Rule Classification Technique in SDN Environment (SDN 환경에서의 TrAdaBoost 기반 Flow 규칙 구분 기법)

  • Kim, Min-Woo;Lim, Hwan-Hee;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.149-150
    • /
    • 2019
  • 기존의 Flow 규칙 구분을 위해 연구되었던 기법들은 적응적 또는 사전 처리의 접근법이 제안되었으나 각각의 장단점을 기반으로 효율적인 접근법이 연구되어야한다. 본 연구에서는 Flow 규칙을 삽입하기 전에, 스위치의 계산 작업을 완화하기 위하여 전이 학습 기법인 TrAdaBoost를 이용함으로써 Flow 규칙들을 구분하는 접근법을 제안한다.

  • PDF

Fault Diagnosis of Wind Power Converters Based on Compressed Sensing Theory and Weight Constrained AdaBoost-SVM

  • Zheng, Xiao-Xia;Peng, Peng
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.443-453
    • /
    • 2019
  • As the core component of transmission systems, converters are very prone to failure. To improve the accuracy of fault diagnosis for wind power converters, a fault feature extraction method combined with a wavelet transform and compressed sensing theory is proposed. In addition, an improved AdaBoost-SVM is used to diagnose wind power converters. The three-phase output current signal is selected as the research object and is processed by the wavelet transform to reduce the signal noise. The wavelet approximation coefficients are dimensionality reduced to obtain measurement signals based on the theory of compressive sensing. A sparse vector is obtained by the orthogonal matching pursuit algorithm, and then the fault feature vector is extracted. The fault feature vectors are input to the improved AdaBoost-SVM classifier to realize fault diagnosis. Simulation results show that this method can effectively realize the fault diagnosis of the power transistors in converters and improve the precision of fault diagnosis.

Recent Developments in Discriminant Analysis fro man Information Geometric Point of View

  • Eguchi, Shinto;Copas, John B.
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.2
    • /
    • pp.247-263
    • /
    • 2001
  • This paper concerns a problem of classification based on training dta. A framework of information geometry is given to elucidate the characteristics of discriminant functions including logistic discrimination and AdaBoost. We discuss a class of loss functions from a unified viewpoint.

  • PDF

An Improved AdaBoost Algorithm by Clustering Samples (샘플 군집화를 이용한 개선된 아다부스트 알고리즘)

  • Baek, Yeul-Min;Kim, Joong-Geun;Kim, Whoi-Yul
    • Journal of Broadcast Engineering
    • /
    • v.18 no.4
    • /
    • pp.643-646
    • /
    • 2013
  • We present an improved AdaBoost algorithm to avoid overfitting phenomenon. AdaBoost is widely known as one of the best solutions for object detection. However, AdaBoost tends to be overfitting when a training dataset has noisy samples. To avoid the overfitting phenomenon of AdaBoost, the proposed method divides positive samples into K clusters using k-means algorithm, and then uses only one cluster to minimize the training error at each iteration of weak learning. Through this, excessive partitions of samples are prevented. Also, noisy samples are excluded for the training of weak learners so that the overfitting phenomenon is effectively reduced. In our experiment, the proposed method shows better classification and generalization ability than conventional boosting algorithms with various real world datasets.

Facial Expression Recognition using Face Alignment and AdaBoost (얼굴정렬과 AdaBoost를 이용한 얼굴 표정 인식)

  • Jeong, Kyungjoong;Choi, Jaesik;Jang, Gil-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.193-201
    • /
    • 2014
  • This paper suggests a facial expression recognition system using face detection, face alignment, facial unit extraction, and training and testing algorithms based on AdaBoost classifiers. First, we find face region by a face detector. From the results, face alignment algorithm extracts feature points. The facial units are from a subset of action units generated by combining the obtained feature points. The facial units are generally more effective for smaller-sized databases, and are able to represent the facial expressions more efficiently and reduce the computation time, and hence can be applied to real-time scenarios. Experimental results in real scenarios showed that the proposed system has an excellent performance over 90% recognition rates.

The Optimization of Ensembles for Bankruptcy Prediction (기업부도 예측 앙상블 모형의 최적화)

  • Myoung Jong Kim;Woo Seob Yun
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.39-57
    • /
    • 2022
  • This paper proposes the GMOPTBoost algorithm to improve the performance of the AdaBoost algorithm for bankruptcy prediction in which class imbalance problem is inherent. AdaBoost algorithm has the advantage of providing a robust learning opportunity for misclassified samples. However, there is a limitation in addressing class imbalance problem because the concept of arithmetic mean accuracy is embedded in AdaBoost algorithm. GMOPTBoost can optimize the geometric mean accuracy and effectively solve the category imbalance problem by applying Gaussian gradient descent. The samples are constructed according to the following two phases. First, five class imbalance datasets are constructed to verify the effect of the class imbalance problem on the performance of the prediction model and the performance improvement effect of GMOPTBoost. Second, class balanced data are constituted through data sampling techniques to verify the performance improvement effect of GMOPTBoost. The main results of 30 times of cross-validation analyzes are as follows. First, the class imbalance problem degrades the performance of ensembles. Second, GMOPTBoost contributes to performance improvements of AdaBoost ensembles trained on imbalanced datasets. Third, Data sampling techniques have a positive impact on performance improvement. Finally, GMOPTBoost contributes to significant performance improvement of AdaBoost ensembles trained on balanced datasets.

Forecasting KOSPI Return Using a Modified Stochastic AdaBoosting

  • Bae, Sangil;Jeong, Minsoo
    • East Asian Economic Review
    • /
    • v.25 no.4
    • /
    • pp.403-424
    • /
    • 2021
  • AdaBoost tweaks the sample weight for each training set used in the iterative process, however, it is demonstrated that it provides more correlated errors as the boosting iteration proceeds if models' accuracy is high enough. Therefore, in this study, we propose a novel way to improve the performance of the existing AdaBoost algorithm by employing heterogeneous models and a stochastic twist. By employing the heterogeneous ensemble, it ensures different models that have a different initial assumption about the data are used to improve on diversity. Also, by using a stochastic algorithm with a decaying convergence rate, the model is designed to balance out the trade-off between model prediction performance and model convergence. The result showed that the stochastic algorithm with decaying convergence rate's did have a improving effect and outperformed other existing boosting techniques.

Face Detection using Color Information and AdaBoost Algorithm (색상정보와 AdaBoost 알고리즘을 이용한 얼굴검출)

  • Na, Jong-Won;Kang, Dae-Wook;Bae, Jong-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.5
    • /
    • pp.843-848
    • /
    • 2008
  • Most of face detection technique uses information from the face of the movement. The traditional face detection method is to use difference picture method ate used to detect movement. However, most do not consider this mathematical approach using real-time or real-time implementation of the algorithm is complicated, not easy. This paper, the first to detect real-time facial image is converted YCbCr and RGB video input. Next, you convert the difference between video images of two adjacent to obtain and then to conduct Glassfire Labeling. Labeling value compared to the threshold behavior Area recognizes and converts video extracts. Actions to convert video to conduct face detection, and detection of facial characteristics required for the extraction and use of AdaBoost algorithm.

Design and Implementation of Electrocardiogram Data Interpretation system using AdaBoost Algorithm (AdaBoost 알고리즘을 이용한 심전도 정보 판독 시스템의 설계 및 구현)

  • Lim, Myung-Jae;Hong, Jin-Kyoung;Kim, Kyu-Ho;Choi, Mi-Lim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.129-134
    • /
    • 2010
  • Diseases such as cardiovascular illnesses, according to the National Statistical Office opened reveals that 600-800 people were killed, blood pressure, arteriosclerosis, heart disease, stroke, etc. will be a flow of blood disorders that occur in cardiovascular illnesses today are fulfilling the Master / Slave samangryulin disease appears high. Died of cardiovascular disease also told them the correct first aid survival when patients are accounted for approximately 40% of emergency rapid response is required. Therefore, this paper, the weak classifier in the AdaBoost algorithm to generate a strong classifier by combining effects throughout the analysis to measure the ECG, and cardiovascular disease that occurred to you as soon as the emergency management system that can deliver on the proposed Desk was. The electrocardiogram data measured by the ZigBee-based sensors, communication devices and emergency transport for emergency alarms in the determination and monitoring of the management desk by providing health services to enable the delivery was fast.

Improved face detection method at a distance with skin-color and variable edge-mask filtering (피부색과 가변 경계마스크 필터를 이용한 원거리 얼굴 검출 개선 방법)

  • Lee, Dong-Su;Yeom, Seok-Won;Kim, Shin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.105-112
    • /
    • 2012
  • Face detection at a distance faces is very challenging since images are often degraded by blurring and noise as well as low resolution. This paper proposes an improved face detection method with AdaBoost filtering and sequential testing stages with color and shape information. The conventional AdaBoost filter detects face regions but often generates false alarms. The face detection method is improved by adopting sequential testing stages in order to remove false alarms. The testing stages comprise skin-color test and variable edge-mask filtering. The skin-color filtering is composed of two steps, which involve rectangular window regions and individual pixels to generate binary face clusters. The size of the variable edge-mask is determined by the ellipse which is estimated from the face cluster. The validation of the horizontal and vertical ratio of the mask is also investigated. In the experiments, the efficacy of the proposed algorithm is proved by images captured by a CCTV and a smart-phone