• Title/Summary/Keyword: ada boost

Search Result 193, Processing Time 0.034 seconds

Eye Detection Method Using Geometrical Features Between Eyebrows and Eyes in Smart Phone (스마트 폰에서 눈썹과 눈 간의 기하학적 특성을 이용한 눈 검출 방법)

  • Oh, Woongchun;Kang, Teaho;Kwak, Noyoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.41-44
    • /
    • 2014
  • 본 논문은 안드로이드 스마트 폰 환경에서 정중앙 블록과 주변 블록들 간의 블록 대비도를 이용해 눈썹을 검출한 후, 눈썹과 눈 간의 기하학적 특성을 이용해 눈의 위치를 찾는 눈 검출 방법에 관한 것이다. 제안된 방법은 Haar-like 특징과 AdaBoost 알고리즘 그리고 적응형 템플릿 정합을 이용해 입력 영상에서 얼굴 영역을 검출한 후, 이를 이용해 좌측 및 우측 눈썹과 눈 탐색 영역을 산정한다. 눈썹 영역의 Integral Image에서 눈썹에 해당하는 부분이 주변 블록들에 비해 상대적으로 어둡다는 특성을 이용해 눈썹을 추출한다. 이와 동시에 각 눈 탐색 영역의 Integral Image에서 동공 블록이 나머지 주변 블록들에 비해 상대적으로 어둡고 대칭성이 양호하다는 특성을 이용해 눈 후보 영역들을 추출한 후 최대 블록 대비도를 갖는 블록의 중심화소를 동공 후보점으로 삼는다. 이후 눈의 위치는 항상 눈썹 하단에 위치하며 그 떨어진 정도가 사람마다 크게 다르지 않다는 기하학적 특성을 이용해 눈 후보 영역에서 나온 동공 후보 점들을 검증한다. 제안된 방법은 거리 및 조명 변화 그리고 안경 착용에 강인한 것이 장점이다. 눈썹을 먼저 찾은 후 기하학적 특성을 이용해 좌우 동공 후보점 쌍의 적합성을 검증함으로써 안경과 눈을 효과적으로 구분할 수 있고 눈이 감겨 동공이 가려진 상태에도 감긴 눈의 위치를 검출할 수 있다.

  • PDF

A Video based Traffic Light Recognition System for Intelligent Vehicles (지능형 자동차를 위한 비디오 기반의 교통 신호등 인식 시스템)

  • Chu, Yeon Ho;Lee, Bok Joo;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.29-34
    • /
    • 2015
  • Traffic lights are common in cities and are important cues for the path planning of intelligent vehicles. In this paper, we propose a robust and efficient algorithm for recognizing traffic lights from video sequences captured by a low cost off-the-shelf camera. Instead of using color information for recognizing traffic lights, a shape based approach is adopted. In learning and detection phase, Histogram of Oriented Gradients (HOG) feature is used and a cascade classifier based on Adaboost algorithm is adopted as the main classifier for locating traffic lights. To decide the color of the traffic light, a technique based on histogram analysis in HSV color space is utilized. Experimental results on several video sequences from typical urban environment prove the effectiveness of the proposed algorithm.

SVM based Stock Price Forecasting Using Financial Statements (SVM 기반의 재무 정보를 이용한 주가 예측)

  • Heo, Junyoung;Yang, Jin Yong
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.167-172
    • /
    • 2015
  • Machine learning is a technique for training computers to be used in classification or forecasting. Among the various types, support vector machine (SVM) is a fast and reliable machine learning mechanism. In this paper, we evaluate the stock price predictability of SVM based on financial statements, through a fundamental analysis predicting the stock price from the corporate intrinsic values. Corporate financial statements were used as the input for SVM. Based on the results, the rise or drop of the stock was predicted. The SVM results were compared with the forecasts of experts, as well as other machine learning methods such as ANN, decision tree and AdaBoost. SVM showed good predictive power while requiring less execution time than the other machine learning schemes.

Efficient Object Tracking System Using the Fusion of a CCD Camera and an Infrared Camera (CCD카메라와 적외선 카메라의 융합을 통한 효과적인 객체 추적 시스템)

  • Kim, Seung-Hun;Jung, Il-Kyun;Park, Chang-Woo;Hwang, Jung-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • To make a robust object tracking and identifying system for an intelligent robot and/or home system, heterogeneous sensor fusion between visible ray system and infrared ray system is proposed. The proposed system separates the object by combining the ROI (Region of Interest) estimated from two different images based on a heterogeneous sensor that consolidates the ordinary CCD camera and the IR (Infrared) camera. Human's body and face are detected in both images by using different algorithms, such as histogram, optical-flow, skin-color model and Haar model. Also the pose of human body is estimated from the result of body detection in IR image by using PCA algorithm along with AdaBoost algorithm. Then, the results from each detection algorithm are fused to extract the best detection result. To verify the heterogeneous sensor fusion system, few experiments were done in various environments. From the experimental results, the system seems to have good tracking and identification performance regardless of the environmental changes. The application area of the proposed system is not limited to robot or home system but the surveillance system and military system.

Multi-Criteria decision making based on fuzzy measure

  • Sun, Yan;Feng, Di
    • Journal of Convergence Society for SMB
    • /
    • v.3 no.2
    • /
    • pp.19-25
    • /
    • 2013
  • Decision procedure was done with the evaluation of multi-criterion analysis. Importance of each criterion was considered through heuristically method, specially it was based on the heuristic least mean square algorithm. To consider coalition evaluation, it was carried out by calculation of Shapley index and Interaction value. The model output is also analyzed with the help of those two indexes, and the procedure was also displayed with details. Finally, the differences between the model output and the desired results are evaluated thoroughly, several problems are raised at the end of the example which require for further studying.

  • PDF

Tiny and Blurred Face Alignment for Long Distance Face Recognition

  • Ban, Kyu-Dae;Lee, Jae-Yeon;Kim, Do-Hyung;Kim, Jae-Hong;Chung, Yun-Koo
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.251-258
    • /
    • 2011
  • Applying face alignment after face detection exerts a heavy influence on face recognition. Many researchers have recently investigated face alignment using databases collected from images taken at close distances and with low magnification. However, in the cases of home-service robots, captured images generally are of low resolution and low quality. Therefore, previous face alignment research, such as eye detection, is not appropriate for robot environments. The main purpose of this paper is to provide a new and effective approach in the alignment of small and blurred faces. We propose a face alignment method using the confidence value of Real-AdaBoost with a modified census transform feature. We also evaluate the face recognition system to compare the proposed face alignment module with those of other systems. Experimental results show that the proposed method has a high recognition rate, higher than face alignment methods using a manually-marked eye position.

Boosting the Face Recognition Performance of Ensemble Based LDA for Pose, Non-uniform Illuminations, and Low-Resolution Images

  • Haq, Mahmood Ul;Shahzad, Aamir;Mahmood, Zahid;Shah, Ayaz Ali;Muhammad, Nazeer;Akram, Tallha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3144-3164
    • /
    • 2019
  • Face recognition systems have several potential applications, such as security and biometric access control. Ongoing research is focused to develop a robust face recognition algorithm that can mimic the human vision system. Face pose, non-uniform illuminations, and low-resolution are main factors that influence the performance of face recognition algorithms. This paper proposes a novel method to handle the aforementioned aspects. Proposed face recognition algorithm initially uses 68 points to locate a face in the input image and later partially uses the PCA to extract mean image. Meanwhile, the AdaBoost and the LDA are used to extract face features. In final stage, classic nearest centre classifier is used for face classification. Proposed method outperforms recent state-of-the-art face recognition algorithms by producing high recognition rate and yields much lower error rate for a very challenging situation, such as when only frontal ($0^{\circ}$) face sample is available in gallery and seven poses ($0^{\circ}$, ${\pm}30^{\circ}$, ${\pm}35^{\circ}$, and ${\pm}45^{\circ}$) as a probe on the LFW and the CMU Multi-PIE databases.

Assisted Magnetic Resonance Imaging Diagnosis for Alzheimer's Disease Based on Kernel Principal Component Analysis and Supervised Classification Schemes

  • Wang, Yu;Zhou, Wen;Yu, Chongchong;Su, Weijun
    • Journal of Information Processing Systems
    • /
    • v.17 no.1
    • /
    • pp.178-190
    • /
    • 2021
  • Alzheimer's disease (AD) is an insidious and degenerative neurological disease. It is a new topic for AD patients to use magnetic resonance imaging (MRI) and computer technology and is gradually explored at present. Preprocessing and correlation analysis on MRI data are firstly made in this paper. Then kernel principal component analysis (KPCA) is used to extract features of brain gray matter images. Finally supervised classification schemes such as AdaBoost algorithm and support vector machine algorithm are used to classify the above features. Experimental results by means of AD program Alzheimer's Disease Neuroimaging Initiative (ADNI) database which contains brain structural MRI (sMRI) of 116 AD patients, 116 patients with mild cognitive impairment, and 117 normal controls show that the proposed method can effectively assist the diagnosis and analysis of AD. Compared with principal component analysis (PCA) method, all classification results on KPCA are improved by 2%-6% among which the best result can reach 84%. It indicates that KPCA algorithm for feature extraction is more abundant and complete than PCA.

Single nucleotide polymorphism marker combinations for classifying Yeonsan Ogye chicken using a machine learning approach

  • Eunjin, Cho;Sunghyun, Cho;Minjun, Kim;Thisarani Kalhari, Ediriweera;Dongwon, Seo;Seung-Sook, Lee;Jihye, Cha;Daehyeok, Jin;Young-Kuk, Kim;Jun Heon, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.830-841
    • /
    • 2022
  • Genetic analysis has great potential as a tool to differentiate between different species and breeds of livestock. In this study, the optimal combinations of single nucleotide polymorphism (SNP) markers for discriminating the Yeonsan Ogye chicken (Gallus gallus domesticus) breed were identified using high-density 600K SNP array data. In 3,904 individuals from 198 chicken breeds, SNP markers specific to the target population were discovered through a case-control genome-wide association study (GWAS) and filtered out based on the linkage disequilibrium blocks. Significant SNP markers were selected by feature selection applying two machine learning algorithms: Random Forest (RF) and AdaBoost (AB). Using a machine learning approach, the 38 (RF) and 43 (AB) optimal SNP marker combinations for the Yeonsan Ogye chicken population demonstrated 100% accuracy. Hence, the GWAS and machine learning models used in this study can be efficiently utilized to identify the optimal combination of markers for discriminating target populations using multiple SNP markers.

Relevancy contemplation in medical data analytics and ranking of feature selection algorithms

  • P. Antony Seba;J. V. Bibal Benifa
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.448-461
    • /
    • 2023
  • This article performs a detailed data scrutiny on a chronic kidney disease (CKD) dataset to select efficient instances and relevant features. Data relevancy is investigated using feature extraction, hybrid outlier detection, and handling of missing values. Data instances that do not influence the target are removed using data envelopment analysis to enable reduction of rows. Column reduction is achieved by ranking the attributes through feature selection methodologies, namely, extra-trees classifier, recursive feature elimination, chi-squared test, analysis of variance, and mutual information. These methodologies are ranked via Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) using weight optimization to identify the optimal features for model building from the CKD dataset to facilitate better prediction while diagnosing the severity of the disease. An efficient hybrid ensemble and novel similarity-based classifiers are built using the pruned dataset, and the results are thereafter compared with random forest, AdaBoost, naive Bayes, k-nearest neighbors, and support vector machines. The hybrid ensemble classifier yields a better prediction accuracy of 98.31% for the features selected by extra tree classifier (ETC), which is ranked as the best by TOPSIS.