• Title/Summary/Keyword: acute kidney injury model

Search Result 25, Processing Time 0.035 seconds

Neutrophil Gelatinase-Associated Lipocalin and Kidney Diseases

  • Yim, Hyung Eun
    • Childhood Kidney Diseases
    • /
    • v.19 no.2
    • /
    • pp.79-88
    • /
    • 2015
  • Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as one of the most promising biomarkers of renal epithelial injury. Numerous studies have presented the diagnostic and prognostic utility of urinary and plasma NGAL in patients with acute kidney injury, chronic kidney disease, renal injury after kidney transplantation, and other renal diseases. NGAL is a member of the lipocalin family that is abundantly expressed in neutrophils and monocytes/macrophages and is a mediator of the innate immune response. The biological significance of NGAL to hamper bacterial growth by sequestering iron-binding siderophores has been studied in a knock-out mouse model. Besides neutrophils, NGAL is detectable in most tissues normally encountered by microorganisms, and its expression is upregulated in epithelial cells during inflammation. A growing number of studies have supported the clinical utility of NAGL for detecting invasive bacterial infections. Several investigators including our group have reported that measuring NGAL can be used to help predict and manage urinary tract infections and acute pyelonephritis. This article summarizes the biology and pathophysiology of NGAL and reviews studies on the implications of NGAL in various renal diseases from acute kidney injury to acute pyelonephritis.

Effects of Human Adipose-Derived Stem Cells in Regenerating the Damaged Renal Tubular Epithelial Cells in an Animal Model of Cisplatin-Induced Acute Kidney Injury

  • Kim, Saeyoon;Lee, Eung Bin;Song, In Hwan;Kim, Yong Jin;Park, Hosun;Kim, Yong Woon;Han, Gi Dong;Kim, Kyung Gon;Park, Yong Hoon
    • Childhood Kidney Diseases
    • /
    • v.19 no.2
    • /
    • pp.89-97
    • /
    • 2015
  • Background: We conducted this experimental study to examine whether human adipose-derived stem cells (ADSCs) are effective in achieving a recovery of damaged renal tubular epithelial cells in an animal model of cisplatin-induced acute kidney injury using rats. Methods: To examine the in vitro effects of ADSCs in improving nephrotoxicity, we treated mouse renal tubular epithelial cells with both ADSCs and cisplatin mouse renal tubular epithelial cells. And we equally divided 30 male white Sprague-Dawley (SD) rats into the three groups: the control group (intraperitoneal injection of a sterile saline), the cisplatin group (intraperitoneal injection of cisplatin) and the ADSC group (intraperitoneal injection of cisplatin and the hADSC via the caudal vein). At five days after the treatment with cisplatin, serum levels of blood urine nitrogen (BUN) and creatinine were measured from each SD rat. We performed histopathologic examinations of tissue samples obtained from the kidney. Results: The degree of the expression of TNF-${\alpha}$ and that of Bcl-2 were significantly higher and lower respectively, in cisplatin group (P<0.05). Serum levels of BUN (P=0.027) and creatinine (P=0.02) were significantly higher in cisplatin group. On histopathologic examinations, there was a significant difference in the ratio of the renal injury between cisplatin group and ADSC group (P=0.002). Conclusion: The ADSCs might have a beneficial effect in regenerating the damaged renal tubular epithelial cells.

Protective effect of ginsenosides Rk3 and Rh4 on cisplatin-induced acute kidney injury in vitro and in vivo

  • Baek, Seung-Hoon;Shin, Byong-kyu;Kim, Nam Jae;Chang, Sun-Young;Park, Jeong Hill
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.233-239
    • /
    • 2017
  • Background: Nephrotoxicity is the major side effect in cisplatin chemotherapy. Previously, we reported that the ginsenosides Rk3 and Rh4 reduced cisplatin toxicity on porcine renal proximal epithelial tubular cells (LLC-PK1). Here, we aimed to evaluate the protective effect of ginsenosides Rk3 and Rh4 on kidney function and elucidate their antioxidant effect using in vitro and in vivo models of cisplatin-induced acute renal failure. Methods: An enriched mixture of ginsenosides Rk3 and Rh4 (KG-KH; 49.3% and 43.1%, respectively) was purified from sun ginseng (heat processed Panax ginseng). Cytotoxicity was induced by treatment of $20{\mu}M$ cisplatin to LLC-PK1 cells and rat model of acute renal failure was generated by single intraperitoneal injection of 5 mg/kg cisplatin. Protective effects were assessed by determining cell viability, reactive oxygen species generation, blood urea nitrogen, serum creatinine, antioxidant enzyme activity, and histopathological examination. Results: The in vitro assay demonstrated that KG-KH ($50{\mu}g/mL$) significantly increased cell viability (4.6-fold), superoxide dismutase activity (2.8-fold), and glutathione reductase activity (1.5-fold), but reduced reactive oxygen species generation (56%) compared to cisplatin control cells. KG-KH (6 mg/kg, per os) also significantly inhibited renal edema (87% kidney index) and dysfunction (71.4% blood urea nitrogen, 67.4% creatinine) compared to cisplatin control rats. Of note, KG-KH significantly recovered the kidney levels of catalase (1.2-fold) and superoxide dismutase (1.5-fold). Conclusion: Considering the oxidative injury as an early trigger of cisplatin nephrotoxicity, our findings suggest that ginsenosides Rk3 and Rh4 protect the kidney from cisplatin-induced oxidative injury and help to recover renal function by restoring intrinsic antioxidant defenses.

The Iliac Fossa Transplant as an Acute Rejection Model in Porcine Kidney Transplantation: a Tool for the Safety Study of the Stem Cell- induced Humanized Tissue (돼지 장기이식에서 급성거부반응 연구에 효과적인 엉덩오목이식 동물모델: 줄기세포유래 Humanized 조직의 안전성 평가모델)

  • Kwak, Ho-Hyun;Nam, Hyun-Suk;Woo, Heung-Myong
    • Journal of Veterinary Clinics
    • /
    • v.28 no.1
    • /
    • pp.63-70
    • /
    • 2011
  • To consider the iliac fossa as the vascular anastomosis site of kidney transplantation for the short-term study of acute rejection in pigs. Twelve domestic pigs weighing 39~48 kg underwent heterotopic renal allgraft transplantation. The experimental animals were divided into 2 groups in terms of renal vascular anastomosis site; the external iliac artery and vein were used in iliac fossa model (n = 6), the abdominal aorta and the caudal vena cava inferior to the kidney were used in abdominal cavity model (n = 6). Renal function was evaluated by daily measurement of plasma creatinine and BUN concentrations. The experiments' health including postoperative complications was also assessed daily for 8 days after transplantation. After euthanazation gross and histopathologic analysis was performed. All six pigs in iliac fossa model developed neuropraxia and lameness of the ipsilateral pelvic limb. However, no necrosis was observed in any pigs. In the abdominal cavity model, durations of both the surgical operation and the vascular anastomosis were significantly longer than those in the iliac fossa model. Furthermore, ischemia injury of the transplanted kidney was increased in abdominal cavity model, which induced accelerated-acute immune response from day 4 after transplantation. Despite of pelvic limb complication, the iliac fossa model showed more advantages including not only less ischemia time related to easy vascular anastomosis, but also less immune response during the acute rejection period. The results indicate that the iliac fossa model may be appropriate to the study of acute rejection in porcine kidney transplantation.

Circ_UBE2D2 Attenuates the Progression of Septic Acute Kidney Injury in Rats by Targeting miR-370-3p/NR4A3 Axis

  • Huang, Yanghui;Zheng, Guangyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.740-748
    • /
    • 2022
  • As circ_UBE2D2 has been confirmed to have targeted binding sites with multiple miRNAs involved in septic acute kidney injury (SAKI), efforts in this study are directed to unveiling the specific role and relevant mechanism of circ_UBE2D2 in SAKI. HK-2 cells were treated with lipopolysaccharide (LPS) to construct SAKI model in vitro. After sh-circ_UBE2D2 was transfected into cells, the transfection efficiency was detected by qRT-PCR, cell viability and apoptosis were determined by MTT assay and flow cytometry, and expressions of Bcl-2, Bax and Cleaved-caspase 3 were quantified by western blot. Target genes associated with circ_UBE2D2 were predicted using bioinformatics analysis. After the establishment of SAKI rat model, HE staining and TUNEL staining were exploited to observe the effect of circ_UBE2D2 on tissue damage and cell apoptosis. The expression of circ_UBE2D2 was overtly elevated in LPS-induced HK-2 cells. Sh-circ_UBE2D2 can offset the inhibition of cell viability and the promotion of cell apoptosis induced by LPS. Circ_UBE2D2 and miR-370-3p as well as miR-370-3p and NR4A3 have targeted binding sites. MiR-370-3p inhibitor reversed the promoting effect of circ_UB2D2 silencing on viability of LPS-treated cells, but shNR4A3 neutralized the above inhibitory effect of miR-370-3p inhibitor. MiR-370-3p inhibitor weakened the down-regulation of NR4A3, Bax and Cleaved caspase-3 and the up-regulation of Bcl-2 induced by circ_UB2D2 silencing, but these trends were reversed by shNR4A3. In addition, sh-circ_UBE2D2 could alleviate the damage of rat kidney tissue. Circ_UBE2D2 mitigates the progression of SAKI in rats by targeting miR-370-3p/NR4A3 axis.

Enhancing Acute Kidney Injury Prediction through Integration of Drug Features in Intensive Care Units

  • Gabriel D. M. Manalu;Mulomba Mukendi Christian;Songhee You;Hyebong Choi
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.434-442
    • /
    • 2023
  • The relationship between acute kidney injury (AKI) prediction and nephrotoxic drugs, or drugs that adversely affect kidney function, is one that has yet to be explored in the critical care setting. One contributing factor to this gap in research is the limited investigation of drug modalities in the intensive care unit (ICU) context, due to the challenges of processing prescription data into the corresponding drug representations and a lack in the comprehensive understanding of these drug representations. This study addresses this gap by proposing a novel approach that leverages patient prescription data as a modality to improve existing models for AKI prediction. We base our research on Electronic Health Record (EHR) data, extracting the relevant patient prescription information and converting it into the selected drug representation for our research, the extended-connectivity fingerprint (ECFP). Furthermore, we adopt a unique multimodal approach, developing machine learning models and 1D Convolutional Neural Networks (CNN) applied to clinical drug representations, establishing a procedure which has not been used by any previous studies predicting AKI. The findings showcase a notable improvement in AKI prediction through the integration of drug embeddings and other patient cohort features. By using drug features represented as ECFP molecular fingerprints along with common cohort features such as demographics and lab test values, we achieved a considerable improvement in model performance for the AKI prediction task over the baseline model which does not include the drug representations as features, indicating that our distinct approach enhances existing baseline techniques and highlights the relevance of drug data in predicting AKI in the ICU setting.

Aurantio-obtusin exerts an anti-inflammatory effect on acute kidney injury by inhibiting NF-κB pathway

  • Haiyan Xiang;Yun Zhang;Yan Wu;Yaling Xu;Yuanhao Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.11-19
    • /
    • 2024
  • Acute kidney injury (AKI) is one of the major complications of sepsis. Aurantio-obtusin (AO) is an anthraquinone compound with antioxidant and anti-inflammatory activities. This study was developed to concentrate on the role and mechanism of AO in sepsis-induced AKI. Lipopolysaccharide (LPS)-stimulated human renal proximal tubular epithelial cells (HK-2) and BALB/c mice receiving cecal ligation and puncture (CLP) surgery were used to establish in vitro cell model and in vivo mouse model. HK-2 cell viability was measured using MTT assays. Histological alterations of mouse renal tissues were analyzed via hematoxylin and eosin staining. Renal function of mice was assessed by measuring the levels of serum creatinine (SCr) and blood urea nitrogen (BUN). The concentrations of pro-inflammatory cytokines in HK-2 cells and serum samples of mice were detected using corresponding ELISA kits. Protein levels of factors associated with nuclear factor kappa-B (NF-κB) pathway were measured in HK-2 cells and renal tissues by Western blotting. AO exerted no cytotoxic effect on HK-2 cells and AO dose-dependently rescued LPS-induced decrease in HK-2 cell viability. The concentrations of pro-inflammatory cytokines were increased in response to LPS or CLP treatment, and the alterations were reversed by AO treatment. For in vivo experiments, AO markedly ameliorated renal injury and reduced high levels of SCr and BUN in mice underwent CLP operation. In addition, AO administration inhibited the activation of NF-κB signaling pathway in vitro and in vivo. In conclusion, AO alleviates septic AKI by suppressing inflammatory responses through inhibiting the NF-κB pathway.

Effect of Jesaeng-sinkihwan on Renal Dysfunction in Ischemia/Reperfusion-Induced Acute Renal Failure Mouse (제생신기환이 허혈-재관류로 유발된 급성 신부전 마우스에 미치는 효과)

  • Han, Byung Hyuk;Lee, Hyeon Kyoung;Jang, Se Hoon;Tai, Ai Lin;Yoon, Jung Joo;Kim, Hye Yoom;Lee, Yun Jung;Lee, Ho Sub;Kang, Dae Gill
    • Herbal Formula Science
    • /
    • v.29 no.1
    • /
    • pp.33-44
    • /
    • 2021
  • Renal ischemia-reperfusion injury(IRI), an important cause of acute renal failure (ARF), cause increased renal tubular injury. Jesaeng-sinkihwan (JSH) was recorded in a traditional Chines medical book named "Bangyakhappyeon (方藥合編)". JSH has been used for treatment of diabetes and glomerulonephritis with patients. Here we investigate the effects of Jesaeng-sinkihwan (JSH) in a mouse model of ischemic acute kidney injury. The animals model were divided into four groups at the age of 8 weeks; sham group: C57BL6 male mice (n=9), I/R group: C57BL6 male mice with I/R surgery (n=9), JSH Low group: C57BL6 male mice with surgery + JSH 100 mg/kg/day (n=9) and JSH High group: C57BL6 male mice with surgery + JSH 300 mg/kg/day (n=9). Ischemia was induced by clamping the both renal arteries during 25 min, and reperfusion was followed. Mouse were orally given with JSH (100 and 300 mg/kg/day during 3 days after surgery. Treatment with JSH significantly ameliorates creatinine clearance(Ccr), Creatinine (Cr) and blood urea nitrogen(BUN) in obtained plasma. . Treatment with JSH reduced kidney inflammation markers such as Neutrophil Gelatinase Associated Lipocalin (NGAL) and kidney injury molecule-1 (KIM-1). JSH also reduced the periodic acid schiff (PAS) staining intensity and picro sirius red staining intensity in kidney of I/R group. These findings suggest that JSH ameliorates tubular injury including renal dysfunction in I/R induced ARF mouse.

Facilitation of cisplatin-induced acute kidney injury by high salt intake through increased inflammatory response (염분 섭취에 의한 시스플라틴 유도 급성 신장 손상의 촉진과 염증 반응과의 연관성)

  • Ji, Seon Yeong;Hwangbo, Hyun;Kim, Min Yeong;Kim, Da Hye;Park, Beom Su;Park, Joung-Hyun;Lee, Bae-Jin;Lee, Hyesook;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.86-93
    • /
    • 2021
  • A high salt diet contributes to kidney damage by causing hypoxia and oxidative stress. Recently, an increase in dietary salt has been reported to induce an inflammatory phenotype in immune cells, further contributing to kidney damage. However, studies on the exact mechanism and role of a high salt diet on the inflammatory response in the kidneys are still insufficient. In this study, a cisplatin-induced acute kidney injury model using C57BL/6 mice was used to analyze the effect of salt intake on kidney injury. Results showed that high salt administration aggravated kidney edema in mice induced by treatment with cisplatin. Moreover, the indicators of kidney and liver function impairment were significantly increased in the group cotreated with high salt compared with that treated with cisplatin alone. Furthermore, the exacerbation of kidney damage by high salt administration was also associated with a decrease in the number of cells in the immune regulatory system. Additionally, high salt administration further decreased renal perfusion functions along with increased cisplatin-induced damage to proximal tubules. This was accompanied by increased expression of T cell immunoglobulin, mucin domain 1 (a biomarker of kidney injury), and Bax (a pro-apoptotic factor). Moreover, cisplatin-induced expression of proinflammatory mediators and cytokines, including cyclooxygenase-2 and tumor necrosis factor-α in kidney tissue, was further increased by high salt intake. Therefore, these results indicate that the kidney's inflammatory response by high salt treatment can further promote kidney damage caused by various pathological factors.

Effective Biomarkers for Miniature Pig in Acute Kidney Injury Using Renal Ischemia-Reperfusion Model (미니돼지의 신허혈-재관류에 의한 급성신손상 모델에서의 유용한 바이오마커)

  • Kim, Se-Eun;Shim, Kyung-Mi;Choi, Seok-Hwa;Kang, Seong-Soo
    • Journal of Veterinary Clinics
    • /
    • v.29 no.5
    • /
    • pp.372-376
    • /
    • 2012
  • Acute kidney injury (AKI) is a serious problem associated with high morbidity and mortality. Ischemia-reperfusion is an important cause of acute kidney injury. This study was performed to ascertain clinically useful biomarkers for the diagnosis of AKI. In three miniature pigs, AKI were induced by 60 minutes of bilateral renal ischemia by the clamping renal artery. Blood and urine samples were collected from the pigs prior to clamping (baseline) and 0, 1, 3 and 5 days post-clamping. Serum blood urea nitrogen (BUN), creatinine, sodium and uric acid were measured in serum and urine samples. Fractional excretion of sodium ($FE_{Na}$) and fractional excretion of uric acid ($FE_{UA}$) were calculated. Also, interleukin (IL)-6, IL-18, liver type fatty acid binding protein (L-FABP) and glutathione-S-transferase (GST) were detected by Western immunoblotting. Serum BUN and creatinine levels were increased significantly at day 1 post-clamping in all three miniature pigs. However, $FE_{Na}$ and $FE_{UA}$ showed marked individual differences. Western immunoblotting revealed significantly increased levels of IL-6, IL-18, L-FABP and GST in post-ischemic urine, compared to pre-clamping. While more research concerning the variance of $FE_{Na}$ and $FE_{UA}$ is needed, serum BUN, creatinine, IL-6, IL-18, L-FABP and GST may be sensitive urine biomarkers for diagnosis of AKI together with other biomarkers in the porcine ischemia-reperfusion model.