• Title/Summary/Keyword: acute alcohol-induced liver injury

Search Result 24, Processing Time 0.019 seconds

Protective Effect of Dandelion Extracts on Ethanol-Induced Acute Hepatotoxicity in C57BL/6 Mice

  • Liu, Xiao-Yu;Ma, Jie;Park, Chung-Mu;Chang, Hee-Kyung;Song, Young-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.269-275
    • /
    • 2008
  • Dandelion (Taraxacum officinale) has been widely used as an anti-inflammatory agent in oriental medicine. In the current study, we investigated the protective effect, and the possible mechanism, of dandelion extracts against ethanol-induced acute hepatotoxicity in C57BL/6 mice. Dandelion water and ethanol extract was administered at 2 g/kg body weight (BW) once daily for 7 consecutive days, whereas control and ethanol groups received water by gavage. Ethanol (50% ethanol; 6 g/kg BW) was administered 12 hr before sacrificing the mice in order to generate liver injury. Significantly increased serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities as well as liver triglyceride (TG) and cholesterol levels were attenuated by dandelion supplementation. In addition, dandelion extracts not only enhanced alcohol dehydrogenase (ADH) and anti-oxidative enzyme activities, but reduced lipid peroxidation. Cytochrome P450 2E1 (CYP 2E1), one of the critical enzymes xenobiotic metabolism, expression was lower with ethanol treatment but restored by dandelion supplementation. These results were confirmed by improved histopathological changes in fatty liver and hepatic lesions induced by ethanol. In conclusion, dandelion could protect liver against ethanol administration by attenuating of oxidative stress and inflammatory responses.

The Ameliorating Effect of Hoveniae Semen Seu Fructus Extract against Ethanol-induced Psychomotor Alterations in Rats (흰쥐에서 지구자 추출물의 에탄올 유도 숙취 행동 개선 효능)

  • dela Pena, Irene Joy I.;de la Pena, June Bryan;Cheong, Jae Hoon
    • YAKHAK HOEJI
    • /
    • v.58 no.5
    • /
    • pp.300-306
    • /
    • 2014
  • Ethanol consumption causes psychomotor alterations. Hovenia Semen seu Fructus (HS), widely distributed in Korea, China, and Japan, has been reported to have beneficial effects on acute alcohol-induced liver injury. The present study sought to assess the effects of HS extract on ethanol-induced psychomotor alterations in rats. Sprague-Dawley rats were orally (p.o.) given ethanol (4 g/kg) (ethanol group) to induce psychomotor alterations. A separate group (HS-treated groups), were treated with different dosages of HS (50, 100, and 200 mg/kg, p.o.), 30 minutes before ethanol treatment. The control group received only the vehicle (saline). Ethanol-induced psychomotor alterations were evaluated in the open-field, rota-rod, hanging wire, and cold swimming test. In addition, blood ethanol and acetaldehyde concentrations were also measured. Behavioral evaluations and blood analysis were carried out 0.5, 1, 2, 4, and 8 hours after ethanol administration. Pre-treatment of HS ameliorated ethanol-induced alterations in the open-field, rota-rod, and cold swimming test, significantly evident in 2 and 4 hours after ethanol treatment. These improvements coincided with decrease in blood ethanol and acetaldehyde concentration. Based on these results, the present study suggests that HS may have ameliorating effects against ethanol-induced psychomotor alterations.

Blockade of Retinol Metabolism Protects T Cell-Induced Hepatitis by Increasing Migration of Regulatory T Cells

  • Lee, Young-Sun;Yi, Hyon-Seung;Suh, Yang-Gun;Byun, Jin-Seok;Eun, Hyuk Soo;Kim, So Yeon;Seo, Wonhyo;Jeong, Jong-Min;Choi, Won-Mook;Kim, Myung-Ho;Kim, Ji Hoon;Park, Keun-Gyu;Jeong, Won-Il
    • Molecules and Cells
    • /
    • v.38 no.11
    • /
    • pp.998-1006
    • /
    • 2015
  • Retinols are metabolized into retinoic acids by alcohol dehydrogenase (ADH) and retinaldehyde dehydrogenase (Raldh). However, their roles have yet to be clarified in hepatitis despite enriched retinols in hepatic stellate cells (HSCs). Therefore, we investigated the effects of retinols on Concanavalin A (Con A)-mediated hepatitis. Con A was injected into wild type (WT), Raldh1 knockout ($Raldh1^{-/-}$), $CCL2^{-/-}$ and $CCR2^{-/-}$ mice. For migration study of regulatory T cells (Tregs), we used in vivo and ex vivo adoptive transfer systems. Blockade of retinol metabolism in mice given 4-methylpyrazole, an inhibitor of ADH, and ablated Raldh1 gene manifested increased migration of Tregs, eventually protected against Con A-mediated hepatitis by decreasing interferon-${\gamma}$ in T cells. Moreover, interferon-${\gamma}$ treatment increased the expression of ADH3 and Raldh1, but it suppressed that of CCL2 and IL-6 in HSCs. However, the expression of CCL2 and IL-6 was inversely increased upon the pharmacologic or genetic ablation of ADH3 and Raldh1 in HSCs. Indeed, IL-6 treatment increased CCR2 expression of Tregs. In migration assay, ablated CCR2 in Tregs showed reduced migration to HSCs. In adoptive transfer of Tregs in vivo and ex vivo, Raldh1-deficient mice showed more increased migration of Tregs than WT mice. Furthermore, inhibited retinol metabolism increased survival rate (75%) compared with that of the controls (25%) in Con A-induced hepatitis. These results suggest that blockade of retinol metabolism protects against acute liver injury by increased Treg migration, and it may represent a novel therapeutic strategy to control T cell-mediated acute hepatitis.

Collection, Identification and Hepatic Effect of Native Cordyceps militaris (새로운 번데기 동충하초의 수집, 동정 및 간기능에 미치는 효과)

  • Lee, Ki-Won;Nam, Byung-Hyouk;Jo, Wool-Soon;Oh, Su-Jung;Kang, Eun-Young;Cui, Yong;Lee, Jae-Yun;Cheon, Sang-Cheol;Jeong, Min-Ho;Lee, Jae-Dong
    • The Korean Journal of Mycology
    • /
    • v.34 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • Entomopathogenic fungus Cordyceps militaris is famous for its medicinal efficacies. It has been reported to have various pharmacological activities such as anti-tumour, insecticidal, antibacterial, immunomodulatory and antioxidant. In this study, we investigated the effect of the extract of C. militaris (MPUN8501), which was identified by the analysis of the nucleotide sequences of 5.8S ribosomal RNA, on the function of liver. C. militaris powder was extracted using hot water extracts method as time, volume and temperature and using method as differential polarity of organic solvent. Each fraction was tested for the improvement of hepatic enzyme alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activity. The BuOH extracts (CME) had highest activity which was used for the test of toxicity and efficacy of C. militaris. The enhancing effect of CME on the activity of ADH and ALDH was much more than medicine, drink, natural tea etc. Thus CME promoted the resolution of alcohol and acetaldehyde in rats, inducing recovery to normal condition rapidly. Furthermore, oral administration of CME effectively protected the carbon tetrachloride-induced acute hepatic injury as revealed by the hematological parameters (levels of sGOT and sGPT) and histological observation. CME was ascertained to be safe by regulatory toxicity studies of single dose toxicity and genotoxicity. These results suggest that CME would be useful for the maintaining normal hepatic activity as a functional health food.